

The Engineering of
Reliable Embedded Systems

Developing software for ‘SIL 0’ to ‘SIL 3’ designs

using time-triggered architectures

SECOND EDITION

Michael J. Pont

This document contains extracts from the following book:

Pont, M.J. (2016) “The Engineering of Reliable Embedded Systems: Developing

software for ‘SIL 0’ to ‘SIL 3’ designs using Time-Triggered architectures”,

(Second Edition) SafeTTy Systems.

ISBN: 978-0-9930355-3-1.

This extract was released: 16 May 2017

Further information about this book can be found here:

https://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems-second-edition

This document may be freely distributed, provided that it remains intact

and is not altered in any way.

2016

https://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems-second-edition

The Engineering of
Reliable Embedded Systems

Developing software for ‘SIL 0’ to ‘SIL 3’ designs

using time-triggered architectures

SECOND EDITION

Michael J. Pont

2016

Published by SafeTTy Systems Ltd

www.SafeTTy.net

First published 2016

First printing November 2016 (Edition 2.0)

Second printing December 2016 (Edition 2.1) with corrections.

Third printing April 2017 (Edition 2.2) with corrections.

Fourth printing May 2017 (Edition 2.3) with corrections.

Copyright © 2014-2017 by SafeTTy Systems Ltd

The right of Michael J. Pont to be identified as Author of this work has been

asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

ISBN 978-0-9930355-3-1

All rights reserved; no part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise without the prior written

permission of the publishers. This book may not be lent, resold, hired out or

otherwise disposed of in any form of binding or cover other than that in which it is

published, without the prior consent of the publishers.

Trademarks

CorrelaTTor, DecomposiTTor, DuplicaTTor, MoniTTor, PredicTTor, ReliabiliTTy,

SafeTTy, SafeTTy Systems, TriplicaTTor and WarranTTor are registered

trademarks or trademarks of SafeTTy Systems Ltd in the UK and other countries.

ARM® is a registered trademark of ARM Limited.

All other trademarks acknowledged.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

http://www.safetty.net/

In memory of David Robert Jones, 1947-2016

- vii -

Contents

Acronyms and abbreviations ... xxi

International standards and guidelines .. xxiii

Preface .. xxv
a. What is a ‘reliable embedded system’? .. xxv
b. Who needs reliable embedded systems? ... xxv
c. Why work with Time-Triggered systems? .. xxvi
d. How does this book relate to international safety standards? xxvi
e. What microcontroller hardware is used in this book? .. xxvii
f. What programming language is used? .. xxvii
g. Where can I find the code examples? ... xxvii
h. Is the code ‘freeware’? .. xxviii
i. How does this book relate to ‘ERES’? ... xxviii
j. Do you plan to write any further books? .. xxviii
k. Can you help us build our TT system? .. xxviii
l. Did you take all of the photographs? .. xxviii
m. Is there anyone that you’d like to thank? ... xxix

PART ONE: INTRODUCTION ... 1

CHAPTER 1: Introduction ... 3
1.1. Introduction .. 3
1.2. Single-program, real-time embedded systems ... 4
1.3. Working with TASKs ... 5
1.4. TT vs. ET architectures .. 6
1.5. Modelling system timing characteristics .. 7
1.6. Working with TTC SCHEDULERs .. 8
1.7. Supporting TASK pre-emption ... 10
1.8. Supporting multiple PROCESSORs and / or multiple cores 11
1.9. Changing MODE ... 12
1.10. The need for run-time monitoring .. 13
1.11. Bending the rules .. 13
1.12. TT Wrappers ... 14
1.13. Case studies .. 14
1.14. Conclusions ... 14

CHAPTER 2: A simple TTC SCHEDULER ... 15
2.1. Introduction .. 15
2.2. Hardware target ... 15
2.3. An introduction to TTRD2-02a .. 16
2.4. The SCHEDULER components ... 19
2.5. The SCHEDULER data structure and TASK array .. 20
2.6. The ‘Init’ function.. 21
2.7. The ‘Update’ function ... 24
2.8. The ‘Add Task’ function .. 26

- viii -

2.9. The Dispatcher .. 27
2.10. The ‘Start’ function ... 29
2.11. Watchdog timer support .. 29
2.12. The ‘Switch’ TASK ... 30
2.13. The ‘Heartbeat’ TASK ... 32
2.14. Transferring data between TASKs .. 33
2.15. Conclusions ... 34
2.16. Further reading ... 35

PART TWO: FOUNDATIONS OF RELIABLE TT SYSTEMS 37

CHAPTER 3: Polling and buffering ... 39
3.1. Introduction .. 39
3.2. MULTI-STAGE TASKs .. 39
3.3. Example: Simple low-pass filter .. 40
3.4. BUFFERED OUTPUTs ... 40
3.5. Example: TTRD2-03a ... 42
3.6. Dealing with high-frequency digital inputs ... 42
3.7. Example: Measuring liquid flow rates .. 44
3.8. Using a hardware buffer (FIFO) to support serial inputs 44
3.9. Using DMA support ... 45
3.10. Example: Using DMA to support serial comms ... 45
3.11. Using multi-core PROCESSORs to support I/O activities 45
3.12. Example: NXP LPC54102 ... 46
3.13. Bending the rules .. 46
3.14. Conclusions ... 46
3.15. Further reading ... 46

CHAPTER 4: Data storage and data transfers ... 47
4.1. Introduction .. 47
4.2. Implementing a DUPLICATED VARIABLE .. 48
4.3. When should we use DUPLICATED VARIABLEs? .. 50
4.4. DuV implementation example (TTRD2-04a) ... 51
4.5. What about the SCHEDULER data? .. 52
4.6. What about data transfers via the stack? ... 52
4.7. What about constants?... 52
4.8. Two other forms of DUPLICATED VARIABLE .. 52
4.9. Alternatives to DUPLICATED VARIABLEs (1) .. 53
4.10. Alternatives to DUPLICATED VARIABLEs (2) .. 54
4.11. Alternatives to DUPLICATED VARIABLEs (3) .. 54
4.12. Alternatives to DUPLICATED VARIABLEs (4) .. 54
4.13. Alternatives to DUPLICATED VARIABLEs (5) .. 55
4.14. Links to international standards ... 55
4.15. More about DuVs and DIAGNOSTIC COVERAGE (HARDWARE) 56
4.16. Conclusions ... 56
4.17. Further reading ... 56

- ix -

CHAPTER 5: Interacting with peripherals .. 57
5.1. Introduction .. 57
5.2. Checking pre-conditions ... 57
5.3. Storing and checking register configurations ... 60
5.4. Example: Working with an ADC .. 60
5.5. Example: Feeding a WDT .. 60
5.6. What happens if the register configuration is ‘write only’? 60
5.7. The need for ‘peripheral timeouts’ ... 62
5.8. Different kinds of timeout .. 64
5.9. Performing ‘sanity checks’ on the inputs .. 64
5.10. Example: Checking CPU temperature ... 64
5.11. Performing ‘sanity checks’ on the outputs ... 65
5.12. Example: Checking an alarm output ... 65
5.13. Higher-level POSTs and BISTs ... 65
5.14. Is the peripheral code library suitable? .. 66
5.15. Links to international safety standards ... 67
5.16. Conclusions ... 68
5.17. Further reading ... 68

CHAPTER 6: DIVERSE TASKS ... 69
6.1. Introduction .. 69
6.2. Effective design diversity .. 70
6.3. Why ‘different’ doesn’t necessarily mean ‘diverse’ .. 71
6.4. We need a ‘White Box’ design approach .. 72
6.5. The need for ‘Deinit’ functions ... 73
6.6. Design considerations ... 73
6.7. Example: A SCHEDULER with support for BACKUP TASKs .. 73
6.8. Example: A DecomposiTTor design that employs DIVERSE TASKS 74
6.9. Links to international standards ... 74
6.10. Conclusions ... 74
6.11. Further reading ... 74

CHAPTER 7: BALANCED TASKs .. 75
7.1. Introduction .. 75
7.2. The difference between ‘balancing up’ and ‘balancing down’ 76
7.3. Balancing down: BUFFERED OUTPUTs ... 76
7.4. Balancing down: One TASK or two? ... 77
7.5. Balancing down: Hardware-supported balancing ... 77
7.6. Balancing up: Editing conditional statements .. 78
7.7. Balancing up: Using Sandwich Delays ... 80
7.8. Controlling the timing of activities within TASKs ... 80
7.9. Execution-time balancing in TTH / TTP designs .. 81
7.10. Conclusions ... 82
7.11. Further reading ... 82

- x -

CHAPTER 8: STATEs, MODEs and SUB-MODES .. 83
8.1. Introduction .. 83
8.2. Implementing a STATE .. 83
8.3. Implementing a MODE ... 83
8.4. Changing MODE ... 84
8.5. Implementing effective multi-MODE designs .. 85
8.6. How to implement a RESET VARIABLE .. 86
8.7. Multi-MODE design example (TTRD2-08a) .. 86
8.8. Design example with fault injection (TTRD2-08b) .. 86
8.9. How can we ‘limp home’ safely? .. 88
8.10. SAME-MODE RESETS in response to an ABNORMAL PROCESSOR STATE 88
8.11. SAME-MODE RESETS in a NORMAL PROCESSOR STATE ... 88
8.12. MODE changes without resets (TTRD2-08d) .. 89
8.13. Working with BACKUP TASKs.. 89
8.14. Please use reset-based MODE changes whenever possible! 89
8.15. Changing the SUB-MODE .. 90
8.16. Design example that supports SUB-MODEs (TTRD2-08e) 90
8.17. Design example with SUB-MODE TIMEOUTS ... 91
8.18. Conclusions ... 92
8.19. Further reading ... 92

CHAPTER 9: SHARED-CLOCK SCHEDULERS and GALS systems 93
9.1. Introduction .. 93
9.2. SCS: Overview ... 94
9.3. SCS: Synchronising the SCHEDULERs .. 94
9.4. SCS: Transferring data (Overall architecture) ... 96
9.5. SCS: Transferring data (DISTRIBUTED VARIABLEs revisited) 97
9.6. SCS: Detecting network and PROCESSOR errors (Overview) 98
9.7. SCS: Detecting errors in a SLAVE .. 99
9.8. SCS: Detecting errors in the MASTER .. 99
9.9. SCS: Handling errors detected by a SLAVE ... 100
9.10. SCS: Handling errors detected by the MASTER ... 100
9.11. Distributed SCS designs using CAN ... 101
9.12. Example: SCS CAN design (TTRD2-09a) ... 102
9.13. Example: Creating a UART-based DuplicaTTor design 102
9.14. GALS designs ... 103
9.15. Conclusions ... 103
9.16. Further reading ... 103

CHAPTER 10: Working with third-party code libraries 105
10.1. Introduction .. 105
10.2. Meeting IEC 61508 requirements ... 105
10.3. Meeting ISO 26262 requirements... 107
10.4. Working with SOUP .. 107
10.5. Conclusions ... 108

- xi -

PART THREE: MODELLING TTC DESIGNS ... 109

CHAPTER 11: Modelling with TICK LISTs ... 111
11.1. Introduction .. 111
11.2. Basic TICK LISTs ... 111
11.3. Determining the required TICK INTERVAL ... 112
11.4. Working with SHORT TASKs ... 112
11.5. The hyperperiod ... 113
11.6. Performing GCD and LCM calculations ... 113
11.7. Synchronous and asynchronous TASK sets .. 114
11.8. The TASK Sequence Initialisation Period (TSIP) .. 115
11.9. Modelling CPU loading.. 115
11.10. Worked Example 11A: Maximum CPU load .. 116
11.11. Worked Example 11A: Solution .. 117
11.12. Modelling TASK jitter ... 118
11.13. Worked Example 11B: TASK release jitter.. 119
11.14. Worked Example 11B: Solution .. 119
11.15. Modelling response times .. 120
11.16. The need for ‘White-Box’ models ... 122
11.17. Worked Example 11C: ‘Emergency stop’ .. 122
11.18. Worked Example 11C: Solution .. 124
11.19. Conclusions ... 125

CHAPTER 12: Modelling SHARED-CLOCK SCHEDULERs 127
12.1. Introduction .. 127
12.2. SLAVE DELAY and SLAVE JITTER ... 127
12.3. Example: SLAVE DELAY in UART-based designs ... 128
12.4. Example: SLAVE JITTER in UART-based designs .. 129
12.5. Example: SLAVE DELAY in CAN-based designs ... 129
12.6. Example: SLAVE JITTER in CAN-based designs .. 130
12.7. Understanding response times ... 131
12.8. Example: Two-PROCESSOR SCS design with a command input 131
12.9. Conclusions ... 134
12.10. Further reading ... 134

PART FOUR: MONITORING TTC DESIGNS .. 135

CHAPTER 13: Performing POSTs ... 137
13.1. Introduction .. 137
13.2. The approach to low-level POSTs followed in this book 138
13.3. Low-level POST operations (Overview) ... 138
13.4. Testing the clock frequency .. 139
13.5. Testing memory .. 139
13.6. Testing the interrupt operation .. 140
13.7. Using suitably-qualified test libraries ... 140
13.8. Example: Low-level POSTs on LPC1769 (IEC 60335) 141
13.9. Example: Low-level POSTs on STM32Fx (IEC 60335) 141
13.10. Checking the memory used for REGISTER VARIABLEs .. 141

- xii -

13.11. Implementing low-level POSTs ... 142
13.12. Environment tests ... 142
13.13. Example: Checking CPU temperature ... 142
13.14. Checking the peripherals .. 142
13.15. What about other startup checks? ... 142
13.16. Including a test interface in your TASK MODULEs .. 143
13.17. Links to international standards ... 143
13.18. Conclusions ... 144
13.19. Further reading ... 144

CHAPTER 14: Checking the PROCESSOR SOFTWARE ... 145
14.1. Introduction .. 145
14.2. Has the PROCESSOR SOFTWARE been corrupted? .. 145
14.3. Example: Creating a ‘Golden Signature’ with the Keil compiler 146
14.4. Are we running the correct PROCESSOR SOFTWARE? ... 146
14.5. Example: Control of an infusion pump ... 147
14.6. Security and related issues ... 147
14.7. Links to international standards ... 148
14.8. Conclusions ... 148
14.9. Further reading ... 148

CHAPTER 15: Performing Built-In Self Tests (BISTs) 149
15.1. Introduction .. 149
15.2. Performing effective BISTs .. 150
15.3. Determining the DTI (single-PROCESSOR designs) ... 151
15.4. Determining the DTI (multi-PROCESSOR designs) .. 151
15.5. Example: Low-level BISTs in compliance with IEC 60335 152
15.6. Links to international standards ... 152
15.7. Conclusions ... 152
15.8. Further reading ... 152

CHAPTER 16: Making effective use of an iWDT .. 153
16.1. Introduction .. 153
16.2. Required WDT characteristics... 153
16.3. Required iWDT settings .. 154
16.4. iWDT POSTs and BISTs .. 154
16.5. Example: Performing iWDT POSTs and BISTs (TTRD2-16a) 154
16.6. Links to international standards ... 156
16.7. Conclusions ... 156

CHAPTER 17: Adding an eWDC unit .. 157
17.1. Introduction .. 157
17.2. Requirements for an effective eWDC ... 159
17.3. eWDC vs. iWDT? ... 159
17.4. Example: MAX16997 ... 159
17.5. Example: TI TPS65381-Q1 ... 160
17.6. Addressing common cause failures .. 160
17.7. Can we use a small MCU to implement an eWDC? .. 161

- xiii -

17.8. eWDC POSTs and BISTs ... 162
17.9. Links to international standards ... 162
17.10. Conclusions ... 162
17.11. Further reading ... 162

CHAPTER 18: Monitoring TASK execution times ... 163
18.1. Introduction .. 163
18.2. MoniTTor operation.. 164
18.3. Implementing a MoniTTor unit ... 165
18.4. MoniTTor POSTs and BISTs ... 168
18.5. Example: TTC SCHEDULER with MoniTTor (TTRD2-19a) 169
18.6. Working with long TASKs ... 169
18.7. External MoniTTor solutions ... 169
18.8. Working with TASK Guardians ... 169
18.9. Links to international standards ... 170
18.10. Conclusions ... 170
18.11. Further reading ... 170

CHAPTER 19: Monitoring TASK execution sequences 171
19.1. Introduction .. 171
19.2. The importance of predictive monitoring ... 172
19.3. Implementing a predictive monitor .. 172
19.4. PredicTTor POSTs and BISTs ... 174
19.5. Synchronous vs. asynchronous TASK sets .. 174
19.6. Do we need to consider a TSIP? .. 175
19.7. Worked example ... 176
19.8. Where should we store the Task Sequence Representation? 177
19.9. Side effects of the use of a PredicTTor unit .. 178
19.10. Example: Implementing a PredicTTor mechanism (TTRD2-19a)................... 178
19.11. Links to international standards ... 178
19.12. Conclusions ... 179

CHAPTER 20: WarranTTor Units and TT Wrappers 181
20.1. Introduction .. 181
20.2. Simplex and Duplex WarranTTors .. 182
20.3. WarranTTors and TT Wrappers... 182
20.4. Core monitoring capabilities ... 183
20.5. Providing ‘shutdown’ behaviour ... 183
20.6. Providing ‘limp home’ and other recovery behaviour 184
20.7. Addressing CCF concerns .. 184
20.8. Addressing concerns about the software configuration 184
20.9. Addressing security concerns ... 185
20.10. Example: A CorrelaTTor-Cs design (TTRD2-20a) ... 185
20.11. Example: A ‘TT Wrapper’ for an image-processing system 186
20.12. Example: A ‘TT Wrapper’ for an autonomous road vehicle 187
20.13. Links to international standards ... 188
20.14. Conclusions ... 188

- xiv -

PART FIVE: CASE STUDIES ... 189

CHAPTER 21: Introduction to the case studies ... 191
21.1. Introduction .. 191
21.2. Creating a first ‘proof of concept’ prototype .. 191
21.3. A closer look at some significant design challenges 192
21.4. Conclusions ... 193
21.5. Further reading ... 193

CHAPTER 22: Industrial monitoring system ... 195
22.1. The system concept and scope ... 195
22.2. Hazard / risk analysis .. 195
22.3. Relevant international standards ... 196
22.4. Use and maintenance of the system .. 196
22.5. Test and Verification (T&V) plan ... 197
22.6. System installation plan .. 197
22.7. System Context Diagram .. 198
22.8. FUNCTIONAL SAFETY REQUIREMENTs ... 198
22.9. SYSTEM REQUIREMENTS SPECIFICATION .. 199
22.10. SOFTWARE REQUIREMENTS SPECIFICATION (Overview) ... 199
22.11. SoRS: Architecture Specification ... 199
22.12. SoRS: PROCESSOR MODULE Specification .. 202
22.13. SoRS: SCHEDULER MODULE Specification .. 206
22.14. SoRS: SCHEDULER COMM MODULE Specification .. 207
22.15. SoRS: TASK MODULE Specification ... 208
22.16. SoRS: WARRANTTOR Specification ... 212
22.17. SoRS: Base Specification ... 213
22.18. HARDWARE REQUIREMENTS SPECIFICATION .. 214
22.19. Documenting the design ... 214
22.20. Implementing the first prototype ... 214
22.21. Testing the prototype ... 216
22.22. Next steps ... 216
22.23. Conclusions ... 216

CHAPTER 23: Domestic washing machine ... 217
23.1. The system concept and scope ... 217
23.2. Hazard / risk analysis .. 217
23.3. Relevant international standards ... 218
23.4. Use and maintenance of the system .. 218
23.5. Test and Verification (T&V) plan ... 219
23.6. System installation plan .. 219
23.7. System Context Diagram .. 219
23.8. FUNCTIONAL SAFETY REQUIREMENTs ... 220
23.9. SYSTEM REQUIREMENTS SPECIFICATION .. 220
23.10. SOFTWARE REQUIREMENTS SPECIFICATION (Overview) ... 221
23.11. SoRS: Architecture Specification ... 221
23.12. SoRS: PROCESSOR MODULE Specification .. 223
23.13. SoRS: SCHEDULER MODULE Specification .. 228

- xv -

23.14. SoRS: SCHEDULER COMM MODULE Specification .. 229
23.15. SoRS: TASK MODULE Specification ... 230
23.16. SoRS: WARRANTTOR Specification ... 233
23.17. SoRS: Base Specification ... 233
23.18. HARDWARE REQUIREMENTS SPECIFICATION .. 234
23.19. Documenting the design ... 235
23.20. Implementing the first prototype ... 235
23.21. The engineering of reliable embedded systems ... 235
23.22. Conclusions ... 235

CHAPTER 24: Radiotherapy machine .. 237
24.1. Introduction .. 237
24.2. The system concept and scope ... 237
24.3. Background and motivation.. 238
24.4. Changes to international standards .. 239
24.5. Other relevant international standards .. 239
24.6. An overview of the radiotherapy machine ... 239
24.7. A DuplicaTTor Platform in an I-O configuration .. 240
24.8. Applying two DuplicaTTor PLATFORMs .. 241
24.9. Conclusions ... 241
24.10. Further reading ... 241

CHAPTER 25: Steering-column lock .. 243
25.1. Introduction .. 243
25.2. The system concept and scope ... 243
25.3. Hazard / risk analysis .. 245
25.4. The process of ASIL decomposition .. 245
25.5. TASK Set 1 .. 249
25.6. TASK Set 2 .. 251
25.7. POST and BIST requirements .. 251
25.8. Design 1: DecomposiTTor-B .. 252
25.9. Selecting an appropriate PROCESSOR for Design 1 .. 252
25.10. Hardware requirements ... 252
25.11. Design 2: DuplicaTTor-A.. 252
25.12. Selecting appropriate PROCESSORs for Design 2 ... 252
25.13. Hardware requirements ... 253
25.14. The SCHEDULER COMM MODULE ... 253
25.15. Design 3: DuplicaTTor-B (integrated H-Bridge) ... 254
25.16. Design 4: DecomposiTTor-Cs (with motor reverse) 254
25.17. Selecting a design option .. 256
25.18. Conclusions ... 256

CHAPTER 26: Aircraft engine controller .. 257
26.1. Introduction .. 257
26.2. The FADEC unit ... 257
26.3. Design Assurance Levels ... 258
26.4. Selecting an appropriate PLATFORM for a FADEC ... 258
26.5. The required TASK set .. 258

- xvi -

26.6. Configuring large TASK sets.. 258
26.7. Dealing with more constraints .. 260
26.8. Conclusions ... 260
26.9. Further reading ... 260

PART SIX: CONCLUSIONS .. 261

CHAPTER 27: Bending the rules .. 263
27.1. Introduction .. 263
27.2. Why produce a Quasi TT design? .. 263
27.3. How can we monitor a Quasi-TT design? ... 263
27.4. How can we model a Quasi-TT design? .. 264
27.5. Example: Receiving long messages without DMA .. 264
27.6. Supporting the migration from ET to TT designs .. 264
27.7. Conclusions ... 264
27.8. Further reading ... 264

CHAPTER 28: Conclusions ... 265
28.1. Introduction .. 265
28.2. Why do people still use ET architectures? .. 265
28.3. ‘Can we use a TT design in this project?’ .. 266
28.4. ‘Can we use a TT Wrapper in this project?’ .. 266
28.5. Conclusions ... 266

APPENDICES .. 267

APPENDIX 1: Definitions .. 269

APPENDIX 2: Foundation PLATFORMs ... 283
A2.1. Introduction .. 283
A2.2. TT00 .. 283
A2.3. TT01 .. 283
A2.4. TT02 .. 284
A2.5. Conclusions ... 284

APPENDIX 3: Recommended PLATFORMs .. 285
A3.1. Introduction .. 285
A3.2. The aim of this appendix .. 285
A3.3. PLATFORM naming convention ... 286
A3.4. The CorrelaTTor PLATFORMs ... 288
A3.5. -A, -B and -Cx PLATFORMs ... 288
A3.6. Examples of CorrelaTTor designs in this book .. 288
A3.7. The DuplicaTTor PLATFORMs... 289
A3.8. POSTs and BISTs in DuplicaTTor designs... 290
A3.9. The decomposition of function safety requirements 290
A3.10. Examples of ASIL decomposition .. 291
A3.11. Examples of DuplicaTTor designs in this book .. 291
A3.12. The DecomposiTTor PLATFORM .. 291
A3.13. MooN representations of TT PLATFORMs ... 293

- xvii -

A3.14. Example: Implementing 1oo2p designs .. 293
A3.15. The 1oo2+ architecture .. 294
A3.16. 1oo2 vs 1oo1d hardware architectures .. 295
A3.17. Meeting ‘SIL 0’ and equivalent requirements .. 295
A3.18. Meeting ‘SIL 1’ and equivalent requirements .. 295
A3.19. Meeting ‘SIL 2’ and equivalent requirements .. 295
A3.20. Meeting ‘SIL 3’ and equivalent requirements .. 296
A3.21. Meeting ‘SIL 4’ and equivalent requirements .. 296
A3.22. IEC 61508 vs ISO 26262 .. 296
A3.23. Meeting IEC 60730 and related requirements ... 297
A3.24. Meeting ISO 13849-1 requirements ... 297
A3.25. Example: Applying a Ws-DuplicaTTor-B-22 PLATFORM 298
A3.26. Example: Applying a Wd-DecomposiTTor-B-3 PLATFORM 298
A3.27. Conclusions ... 298

APPENDIX 4: Selecting MCUs for your PLATFORM 299
A4.1. Introduction .. 299
A4.2. Selecting an MCU: General considerations .. 299
A4.3. Selecting an MCU: Checking the ‘Golden Signatures’ 300
A4.4. Selecting an MCU: Supporting a TT SCHEDULER .. 300
A4.5. Selecting an MCU: Ideal characteristic in an iWDT ... 301
A4.6. Selecting an MCU: WarranTTor and DuplicaTTor designs 302
A4.7. MCUs used in this book .. 302
A4.8. LPC17xx: PROCESSOR (SIL 1) .. 302
A4.9. STM32F091: PROCESSOR (SIL 2) .. 303
A4.10. STM32F401: PROCESSOR (SIL 2) .. 303
A4.11. XMC4500: PROCESSOR (SIL 2) .. 304
A4.12. TMS570: PROCESSOR (SIL 3) .. 304
A4.13. DuplicaTTor Evaluation Board (SIL 3) ... 305
A4.14. Other options ... 306
A4.15. Conclusions ... 306

APPENDIX 5: The SOFTWARE REQUIREMENTS SPECIFICATION 307
A5.1. Introduction .. 307
A5.2. SoRS: Architecture Specification .. 308
A5.3. SoRS: PROCESSOR MODULE Specification(s) .. 309
A5.4. SoRS: SCHEDULER MODULE Specification(s) .. 311
A5.5. SoRS: SCHEDULER COMM MODULE Specification(s) .. 312
A5.6. SoRS: TASK MODULE Specification(s) ... 313
A5.7. SoRS: WARRANTTOR Specification(s) .. 315
A5.8. SoRS: Base Specification ... 315
A5.9. Conclusions ... 316

APPENDIX 6: Understanding the impact of jitter 317
A6.1. Introduction .. 317
A6.2. TASK release jitter .. 317
A6.3. Understanding the impact of jitter ... 318
A6.4. Example .. 319

- xviii -

A6.5. A useful ‘rule of thumb’ .. 320
A6.6. Conclusions ... 320

APPENDIX 7: Generating timing data .. 321
A7.1. Introduction .. 321
A7.2. Instrumenting the Dispatcher to measure task execution time 322
A7.3. Instrumenting the Scheduler ISR to measure TICK jitter 322
A7.4. Instrumentation settings .. 322
A7.5. Example: Measuring task execution times with TTRD2-07a 326
A7.6. Example: Measuring TICK jitter with TTRD2-07a ... 326
A7.7. Conclusions ... 326

APPENDIX 8: Generating a TICK LIST ... 327
A8.1. Introduction .. 327
A8.2. Generating a TICK LIST (TTRD2-A08a) ... 327
A8.3. Conclusions ... 327

APPENDIX 9: Supporting TASK pre-emption ... 331
A9.1. Introduction .. 331
A9.2. Implementing a TTH SCHEDULER ... 332
A9.3. Key features of a TTH SCHEDULER ... 334
A9.4. TTH example: Emergency stop (TTRD2-A09a) .. 335
A9.5. TTH example: Medical alarm in compliance with IEC 60601-1-8 335
A9.6. TTH example: Long pre-empting section (TTRD2-A09b) 337
A9.7. Protecting shared resources ... 338
A9.8. A TTP SCHEDULER with shared resources (TTRD2-A09c) 339
A9.9. The challenges of priority inversion ... 339
A9.10. Implementing a ‘ceiling’ protocol (TTRD2-A09d) ... 340
A9.11. Monitoring TASK execution times (TTRD2-A09e) .. 340
A9.12. Use of watchdog timers in TTH and TTP designs .. 343
A9.13. Conclusions ... 343
A9.14. Further reading ... 343

APPENDIX 10: Creating deterministic TTH / TTP designs 345
A10.1. Introduction .. 345
A10.2. Jitter levels in TTH designs (TTRD2-A10a) .. 345
A10.3. Reducing jitter in TTH designs (TTRD2-A10b) ... 346
A10.4. How to avoid PI in TT systems (Overview) ... 347
A10.5. Using code balancing with a PredicTTor unit ... 347
A10.6. Do you need to balance your code? ... 348
A10.7. Using code balancing to prevent PI .. 349
A10.8. How to avoid PI in TTH / TTP systems (TRA protocols) 349
A10.9. How to incorporate a TRAP in your design ... 350
A10.10. A complete TTP design (TTRD2-A10c) .. 351
A10.11. Conclusions ... 351
A10.12. Further reading ... 351

- xix -

APPENDIX 11: Unit tests and integration tests .. 353
A11.1. Introduction .. 353
A11.2. Conducting unit tests on the HSI LIBRARY .. 353
A11.3. Testing the PROCESSOR MODULE .. 354
A11.4. Testing the SCHEDULER MODULE ... 355
A11.5. Testing the SCHEDULER COMM MODULE .. 355
A11.6. Conducting unit tests on the TASKs ... 356
A11.7. Conducting integration tests .. 356
A11.8. Code coverage issues ... 357
A11.9. Conclusions ... 357
A11.10. Further reading ... 357

APPENDIX 12: Conducting reviews ... 359
A12.1. Introduction .. 359
A12.2. Testing vs T&V .. 359
A12.3. Walkthroughs ... 359
A12.4. Offline reviews.. 360
A12.5. Are we running the correct PROCESSOR SOFTWARE? ... 360
A12.6. Conclusions ... 360
A12.7. Further reading ... 360

APPENDIX 13: Coding guidelines and related matters 361
A13.1. Introduction .. 361
A13.2. Project directory structure ... 361
A13.3. Code structure .. 362
A13.4. Naming convention in TASK MODULEs .. 362
A13.5. Data duplication and variable names ... 363
A13.6. Conclusions ... 363

Full list of references and related publications ... 365

Index .. 369

- xxi -

 Acronyms and abbreviations

ASIL Automotive Safety Integrity Level

BCET Best-Case Execution Time

BIST Built-In Self Test

CAN Controller Area Network

CBD Contract-Based Design

CCF Common Cause Failure

CMSIS Cortex Microcontroller Software Interface Standard

COTS Commercial Off The Shelf

CPU Central Processor Unit

DAL Design Assurance Level

DiV DISTRIBUTED VARIABLE

DMA Direct Memory Access

DTI Diagnostic Test Interval

DuV DUPLICATED VARIABLE

ECU Electronic Control Unit

EMI Electromagnetic Interference

ET Event Triggered

FAP Failure Assertion Programming

FFI Freedom From Interference

FIFO First-In First-Out (buffer arrangement)

FPGA Field Programmable Gate Array

FSR FUNCTIONAL SAFETY REQUIREMENT

HMI Human-Machine Interface

HRS HARDWARE REQUIREMENTS SPECIFICATION

IoT Internet of Things

LINAC Linear Accelerator

MC Mixed Criticality

MCU Microcontroller (Unit)

MMU Memory Management Unit

MPU Memory Protection Unit

MST MULTI-STATE TASK

PFC PROCESSOR FAULT CODE

POST Power-On Self Test

PTTES Patterns for Time-Triggered Embedded Systems

RMA Rate Monotonic Analysis

SCS SHARED-CLOCK SCHEDULER

SD SLAVE DELAY

SIL Safety Integrity Level

SJ SLAVE JITTER

SoC System on Chip

- xxii -

SoRS SOFTWARE REQUIREMENTS SPECIFICATION

STA Static Timing Analysis

SyRS SYSTEM REQUIREMENTS SPECIFICATION

T&V Test & Verification

TET TASK Execution Time

TG TASK Guardian

TSIP TASK Sequence Initialisation Period

TT Time Triggered

TTC Time-Triggered Co-operative

TTH Time-Triggered Hybrid

TTP Time-Triggered Pre-emptive

TTRD Time-Triggered Reference Design

WCET Worst-Case Execution Time

WDC Watchdog Controller

WDT Watchdog Timer

WMC Washing-Machine Controller

- xxiii -

 International standards and guidelines

Reference in text Full reference

Industrial / Machinery

IEC 61508 IEC 61508: 2010

ISO 13849-1 ISO 13849-1: 2015

Automotive

ISO 26262 ISO 26262: 2011

Household goods

IEC 60730 IEC 60730-1: 2013

IEC 60335

IEC 60335-1: 2010 + A1: 2013

Medical

IEC 60601-1 IEC 60601-1: 2005 + AMD1: 2012

IEC 60601-1-8 IEC 60601-1-8: 2006 + AMD1: 2012

IEC 60601-2-1 IEC 60601-2-1: 2009 + AMD1: 2014

IEC 62304 IEC 62304: 2006 + AMD1: 2015

Civil aerospace

DO-178C DO-178C: 2012

Generic (coding)

MISRA C MISRA C: 2012 (March 2013)

- xxv -

Preface

This book is concerned with the development of reliable, real-time embedded

systems. The particular focus is on the engineering of systems based on ‘Time

Triggered’ software architectures.

In the remainder of this preface, I attempt to provide answers to questions that

prospective readers may have about the book contents.

a. What is a ‘reliable embedded system’?

My goal in this book is to present a model-based process for the development

of embedded applications that can be used to provide evidence that the system

concerned will be able to determine at run time that it has entered an

ABNORMAL PLATFORM STATE1 and handle this situation in a manner that reduces

the risk of UNCONTROLLED PLATFORM FAILUREs to an acceptable level.

The end result is what I mean by a reliable embedded system.

b. Who needs reliable embedded systems?

Techniques for the development of reliable embedded systems are – clearly –

of great concern in safety-critical markets (e.g. the automotive, medical, rail

and aerospace industries), where an UNCONTROLLED PLATFORM FAILURE may

have immediate, fatal, consequences.

The growing challenge of developing complicated embedded systems in

traditional ‘safety’ markets has been recognised, a fact that is reflected in the

emergence in recent years of new (or updated) international standards and

guidelines, including IEC 61508, ISO 26262 and DO-178C.

As products incorporating embedded PROCESSORs become ever more

ubiquitous, safety concerns now have a great impact on developers working

on devices that would not – at one time – have been thought to require a very

formal design, implementation and test process. As a consequence, even

development teams working on apparently ‘simple’ household appliances

now need to address safety concerns. For example, manufacturers need to

ensure that the door of a washing machine cannot be opened by a child during

a ‘spin’ cycle, and must do all they can to avoid the risk of fires in ‘always

on’ applications, such as fridges and freezers. Again, recent standards have

emerged in these sectors (such as IEC 60730).

1 Definitions for terms that appear within the text in SMALL CAPITALS (such as ABNORMAL

PLATFORM STATE and UNCONTROLLED PLATFORM FAILURE) can be found in Appendix 1.

- xxvi -

Reliability is – of course – not all about safety (in any sector). Subject to

inevitable cost constraints, most manufacturers wish to maximise the

reliability of the products that they produce, in order to reduce the cost of

warranty repairs, minimise product recalls and ensure repeat orders.

As systems grow more complicated, ensuring the reliability of embedded

systems can present significant challenges for any organisation.

c. Why work with Time-Triggered systems?

As noted at the start of this Preface, the focus of this book is on TT SYSTEMs.

Implementation of software for a TT SYSTEM will typically start with a single

interrupt that is linked to the periodic overflow of a timer. This interrupt may

drive a SCHEDULER (a simple form of ‘operating system’). The SCHEDULER will

– in turn – release the TASKs at predetermined points in time.

A TT architecture can be viewed as a subset of a more general event-triggered

(ET) architecture. Implementation of a system with an ET architecture will

typically involve use of multiple interrupts, each associated with specific

periodic events (such as timer overflows) or aperiodic events (such as the

arrival of messages over a communication bus at unknown points in time).

TT approaches provide an effective foundation for reliable real-time systems

because it is possible to model the expected system behaviour precisely. This

means that: [i] during the development process, it is possible to demonstrate

that all of the requirements have been met; and [ii] at run time, problems can

be detected very quickly.

The end result is that we can have a high level of confidence that a TT System

will either: [i] operate precisely as required; or [ii] react appropriately if a

problem occurs.

d. How does this book relate to international safety standards?

Throughout this book it is assumed that many readers will be developing

embedded systems in compliance with one or more international standards.

The standards discussed during this book include those listed in Table 1: full

references to these standards are given on Page xxiii.

No detailed knowledge of any of these standards is required in order to read

this book.

- xxvii -

Table 1: A rough comparison of the different ‘Safety Integrity Levels’ (SILs) in some of the
international safety standards and guidelines that are considered in this book.

Generic
(IEC 61508)

(SIL 0) SIL 1 SIL 2 SIL 3 SIL 4

Civil Aerospace
(DO-178C)

Level E Level D Level C Level B Level A

Medical
(IEC 62304)

Class A Class B Class C

Automotive
(ISO 26262)

QM ASIL A ASIL B /

ASIL C
ASIL D --

Machinery
(ISO 13849)

PL a PL b / PL c PL d PL e --

Household
(IEC 60730)

Class A Class B Class C --

e. What microcontroller hardware is used in this book?

Most of the code examples in the book target microcontrollers (MCUs) from

STMicroelectronics (STM32F0, STM32F4), NXP / Freescale (LPC17xx),

Infineon (XMC4000), and Texas Instruments (TMS570).

For safety-related projects, I would aim to employ an MCU with a PROCESSOR

SAFETY MANUAL where this is possible. Such a manual is available for the

majority of the MCUs that I consider in this book.

Where safety is not a direct concern, the techniques presented in this book

with virtually any MCU.

I say more about selection of suitable MCUs for your project in Appendix 4.

f. What programming language is used?

The software in this book is implemented almost entirely in ‘C’.

g. Where can I find the code examples?

This book is accompanied by a set of ‘Time-Triggered Reference Designs’

(TTRDs). The latest set of TTRDs can be found here:

https://www.safetty.net/ttrds

https://www.safetty.net/ttrds

- xxviii -

h. Is the code ‘freeware’?

Both the TTRDs and this book describe implementations of patented

technology and are subject to copyright and other restrictions.

The TTRDs provided with this book may be used without charge:

[i] by universities and colleges in courses for which a degree up to and

including ‘MSc’ level (or equivalent) is awarded; [ii] for non-commercial

projects carried out by individuals and hobbyists.

All other use of any of the TTRDs or patented technology associated with this

book requires purchase of an appropriate ReliabiliTTy Technology Licence:

https://www.safetty.net/reliabilitty-technology-licences

i. How does this book relate to ‘ERES’?

In 2014, I planned to write a number of ‘ERES’ books, each with a focus on

a different market sector (e.g. household goods, automotive, industry). The

aim was to focus each book on an appropriate MCU target.

Inevitably, as I began to get a new company off the ground and support a

number of challenging new customer projects, I found that I had no time to

create more than one book.

When writing ‘ERES2’ I have tried to be more realistic: I planned for a single

book, covering a wider range of sectors and MCUs.

The end result is that the techniques presented in the present book are – at

times – a little more advanced than those presented in ERES.

j. Do you plan to write any further books?

You’ll find up-to-date information about any future books here:

https://www.safetty.net/publications

k. Can you help us build our TT system?

Through my company – SafeTTy Systems Ltd – I have helped many

companies to develop embedded systems using TT software architectures.

Please visit the company website for further information about the products,

technology and services that we offer: https://www.safetty.net/

l. Did you take all of the photographs?

Various photographs and other images that appear in this book are used under

a licence from Dreamstime.com or iStockphoto.

https://www.safetty.net/reliabilitty-technology-licences
https://www.safetty.net/publications
https://www.safetty.net/

- xxix -

m. Is there anyone that you’d like to thank?

As with my previous books, I’d like to use this platform to say a public ‘thank

you’ to a number of people who have all contributed to the book (directly and

indirectly).

I’m grateful to the people who have invited me to work with the companies

that they represent on a range of interesting (and sometimes very challenging)

TT projects in the period since January 2014.

I’m grateful to the people who provided comments on the draft chapters of

this book (prior to publication) and on earlier print runs, including

Prof. Daniel López Amado, Amr Ali Abdelnaby, David Bennetts and Ahmed

Abdelfatah.

I’m grateful to Prof. Peter Bernard Ladkin for drawing my attention to the

papers by Royce (1970) and Parnas & Clements (1986).

A few years later than originally intended (sorry …), I’d like to thank Chris

Hills for his help with the preparation of ‘Embedded C’.

Since 2014, I’ve enjoyed numerous interesting discussions about embedded

systems with Attila Gönczi (thank you).

I’d like to thank David Bowie for ‘Blackstar’ (the ‘last show of the tour’ –

perhaps 43 years later than originally announced, but still far too early);

Beth Orton for ‘Kidsticks’; Hilary Mantel for ‘Wolf Hall’; and

Benedict Cumberbatch for restoring my faith in Hamlet.

I’d also like to thank: Mum and Dad, for theatre trips in Pitlochry (and

everything else); Andrew, Genevieve, Timothy, Jonathan and Eliza for

reintroducing me to Obi-Wan Kenobi (‘Now there’s a name I’ve not heard in

a long, long time’); Susan, John, Benjamin and Rowena for kayaking and dog

walks; Anna, Nick and Ella, for Wales; Jane and Harry for Portsmouth and

other adventures; Dev for Hardwick; Anna and Stavros for lending us their

very pleasant ‘holiday cottage’; Hazel and Tracey for happy weekends;

Ginny, for Fleet; Tim for tea and chats in Langham; Anjali, Salil and Elaanya,

for dinners in Cambridge (and a fishing trip); Len and Enid, for wet barbecues

in Leicester; Andy and James, for looking after Penny; Volker, for dog walks

in Germany; Mr Wahl and his colleagues for ‘Room 213’; Biggles and Bruce,

for walks up a not-so-artificial hill (and Charlotte for making this possible);

Cass and Kynall, for mind games; and Sarah, for Bath in an unreliable British

sports car (and the 30 years since then).

Michael J. Pont

May 2017 (Edition 2.3)

PART ONE: INTRODUCTION

“Everything should be made as simple as possible but no

simpler.”

Albert Einstein

While this quotation has been widely attributed to Einstein, it is not

clear that he ever actually used this precise form of words. The

underlying sentiments have a lot in common with what is usually

called ‘Occam’s Razor’. William of Ockham (c. 1287–1347) was an

English Franciscan monk. His ‘razor’ states that – when selecting

between competing hypotheses – the one that requires the fewest

assumptions should be selected.

http://en.wikipedia.org/wiki/William_of_Ockham

 – Page 3 –

CHAPTER 1: Introduction

This chapter provides an overview of the material that is covered in detail in

the remainder of this book.

Figure 1: The engineering of reliable real-time embedded systems (overview). In this book, our
focus will be on the stages shown on the right of the figure (grey arrows).

1.1. Introduction

The process of engineering reliable, real-time, embedded systems is

summarised schematically in Figure 1. Projects will typically begin by

recording the requirements for safety, security and general system operation.

The impact of potential faults and hazards will be considered. Design and

implementation processes will then follow, during and after which test and

verification activities will be carried out (in order to confirm that the various

requirements have been met in full). Run-time monitoring will then be

performed as the system operates.

The particular focus of this book is on the development of software for this

type of system using time-triggered (TT) architectures.

What distinguishes TT approaches is that it is possible to model the expected

system behaviour precisely. This means that: [i] during the development

process, it is possible to demonstrate that all of the requirements have been

met; and [ii] at run time, problems can be detected very quickly.

The end result is that we can have a high level of confidence that a TT SYSTEM

will either: [i] operate precisely as required; or [ii] react appropriately if a

problem occurs.

In this chapter, we explain what a TT software architecture is, and we consider

some of the processes involved in developing such systems: these processes

will then be explored in detail in the remainder of the text.

Requirements
(general)

Impact
of Faults
& Hazards

Requirements
(safety &
security)

Real-time
embedded

system

Design &
implement

Test & verify

Run-time
monitoring

 – Page 4 –

1.2. Single-program, real-time embedded systems

An embedded computer system (‘embedded system’) is usually based on one

or more PROCESSORs (for example, microcontrollers or microprocessors), and

some software that will execute on embedded PROCESSOR(s). Such

PROCESSORs provide capabilities such as ‘anti-lock’ behaviour for brake

controllers in passenger vehicles, and the features that have transformed basic

mobile phones into ubiquitous ‘smartphones’ in recent years.

The focus in this text is on what are sometimes called ‘single-program’

embedded systems such as engine controllers for aircraft, steer-by-wire

systems for passenger cars, patient monitoring devices in a hospital

environment, automated door locks on railway carriages, and controllers for

domestic washing machines. These systems can be labelled ‘single-program’

because the general user is not able to change the software on the system (in

the way that ‘apps’ are added to a smartphone): instead, any upgrades to the

steering system – for example – will be performed as part of a service

operation, by suitably-qualified technicians.

What also distinguishes the systems above (and those discussed throughout

this book) is that they have real-time characteristics.

Consider, for example, the greatly simplified aircraft autopilot application

illustrated schematically in Figure 2. Here we assume that the pilot has

entered the required course heading, and that the system must make regular

and frequent changes to the rudder, elevator, aileron and engine settings (for

example) in order to keep the aircraft following this path.

An important characteristic of this system is the need to process inputs and

generate outputs at pre-determined time intervals, on a time scale measured

in milliseconds. In this case, even a slight delay in making changes to the

rudder setting (for example) may cause the plane to oscillate very

unpleasantly or, in extreme circumstances, even to crash.

In order to be able to justify the use of the aircraft system in practice (and to

have the autopilot system certified), it is not enough simply to ensure that the

processing is ‘as fast as we can make it’: in this situation, as in many other

real-time applications, the key characteristic is deterministic processing.

What this means is that in many real-time systems we need to be able to

guarantee that a particular activity will always be completed within – say –

2 ms (+/- 5 µs), or at 6 ms intervals (+/- 1 µs): if the processing does not match

this specification, then the application is not just slower than we would like,

it is simply not fit for purpose.

 – Page 5 –

Reminder

1 second (s) = 1.0 s = 100 s = 1000 ms

1 millisecond (ms) = 0.001 s = 10-3 s = 1000 µs

1 microsecond (µs) = 0.000001 s = 10-6 s = 1000 ns

1 nanosecond (ns) = 0.000000001 s = 10-9 s

Box 1

Figure 2: A high-level schematic view of an autopilot system.

1.3. Working with TASKs

A TASK is a named blocks of program code that perform a particular activity

(for example, a TASK may check to see if a switch has been pressed): TASKs

are often implemented as functions in programming languages such as ‘C’

(and this is the approached followed in the present book).

Rudder

r

Elevator

e

Aileron

a

p

r

q

x,

y,

z,

x, y, z = position coordinates

= velocity cordinates

p = roll rate

q = pitch rate

r = yaw rate

Aircraft

Autopilot

System

(schematic)

Position

sensors

(GPS)

Velocity

sensors

(3 axes)

Yaw (rate)

sensor

Pitch

(rate)

sensor

Roll

(rate)

sensor

Main

pilot

controls

Rudder

Elevator

Aileron

Main engine

(fuel)

controllers

 – Page 6 –

1.4. TT vs. ET architectures

Two software architectures are used in modern embedded systems: these can

be labelled as ‘event triggered’ (ET) and ‘time triggered’ (TT). The key

differences between ET and TT systems arises from the way that the TASKs

are released.

For many developers, ET architectures are more familiar. A typical ET design

will be required to handle multiple interrupts. For example, interrupts may

arise from periodic timer overflows, the arrival of messages on a CAN bus,

the pressing of a switch, the completion of an analogue-to-digital conversion

and so on. To create such systems, the developer may employ a TASK to

handle each event directly: this may involve creating an ‘interrupt service

routine’ (ISR) to deal with each event. The developer may also decide to

employ a conventional real-time operating system (RTOS) to support the

event handling. Whether an RTOS is used or not, the end result is the same:

the system must be designed in such a way that TASK releases – which may

occur at ‘random’ points in time, and in various combinations – can be

handled correctly.

We take the view in this book that a key advantage of ET designs is that they

are easy to build. On the other hand, a key challenge with ET designs is that

there may be a very large number of possible system states: this can make it

difficult to verify that the system will always operate correctly.

The alternative to an event-triggered architecture is a time-triggered (‘TT’)

architecture. When saying that an embedded system has a TT architecture we

mean that it executes at least one set of TASKs according to a predetermined

schedule. The TASKs must have: [i] well-defined functional behaviour, and

[ii] well-defined timing behaviour. The schedule will determine the order of

the TASKs are released, the time at which each TASK is released, and whether

one TASK can interrupt (pre-empt) another TASK.

In most cases, the starting point for the implementation of a TT design is a

‘bare metal’ software framework: that is, the system will not usually employ

a conventional RTOS, Linux™ or Windows®. In the software framework, a

single interrupt will be used, linked to the periodic overflow of a timer. A

‘polling’ process will then allow interaction with peripherals.

We view such TT designs as a ‘safer subset’ of a more general class of ET

design (see Figure 3 and Figure 4).

A key advantage of TT designs is that it is (compared with an equivalent ET

design) easy to verify that the system will operate correctly. However, we

accept that – for teams that lack experience – it can often be more challenging

to build a TT design than an equivalent ET design.

 – Page 7 –

Figure 3: Safer language subsets (for example, MISRA C) are employed by many organisations in
order to improve system reliability. See MISRA (2012).

Figure 4: In a manner similar to MISRA C (Figure 3), TT approaches provide a ‘safer subset’ of ET
designs, at the system architecture level.

Our goal in this book is to explore a range of techniques that can facilitate the

development of reliable embedded systems using TT software architectures.

1.5. Modelling system timing characteristics

In a TT System, each PROCESSOR releases TASKs in accordance with a

predetermined TASK schedule. For example, Figure 5 shows a set of TASKs

(in this case Task A, Task B, Task C and Task D) that might be executed by

a TT SYSTEM.

In Figure 5, the release of each sub-group of TASKs (for example, Task A and

Task B) is triggered by what is usually called a TICK. In most designs with a

single PROCESSOR, the TICK is implemented by means of a periodic timer

interrupt. In an aerospace application, the TICK INTERVAL (that is, the time

interval between timer TICKs) of 25 ms might be used, but shorter TICK

INTERVALs (e.g. 1 ms or 100 µs) are more common in other systems.

Figure 5: A set of TASKs being released according to a pre-determined schedule.

The C Programming Language

MISRA C

A ‘safer subset’

Event-Triggered Systems

Time-Triggered Systems

A ‘safer subset’

Time

...A B A BC D C D

 – Page 8 –

The importance of TICK LISTs

The creation and use of TICK LISTs is central to the engineering of reliable TT
systems.

Through the use of this simple model, we can determine key system characteristics
– such as response times, TASK jitter levels (see Appendix 6) and maximum CPU
loading – very early in the design process.

We can then continue to check these characteristics throughout the development
process, and during run-time operation of the system.

We will consider the use of TICK LISTs in detail in Chapter 11.

Box 2

In Figure 5, the TASK sequence executed by the PROCESSOR is as follows:

Task A, Task C, Task B, Task D. In many designs, such a TASK sequence will

be determined at design time (to meet the system requirements) and will be

repeated ‘forever’ when the system runs, unless: [i] the system changes MODE;

[ii] the system is powered down; or [iii] a System Failure occurs.

Sometimes it is helpful (not least during the design process) to think of this

TASK sequence as a TICK LIST: such a list lays out the sequence of TASKs that

will run after each TICK.

For example, the TICK LIST corresponding to the TASK set shown in Figure 5

could be represented as follows:

[Tick 0]
Task A
Task C
[Tick 1]
Task B
Task D

Once the system reaches the end of the TICK LIST, it starts again at the

beginning.

In Figure 5, the TASKs are co-operative (or ‘non-pre-emptive’) in nature: each

TASK must complete before another TASK can execute. The design shown in

these figures can be described as ‘time triggered co-operative’ (TTC) in

nature.

We say more about designs that involve TASK pre-emption in Section 1.7.

1.6. Working with TTC SCHEDULERs

Many (but by no means all) TT designs are implemented using co-operative

TASKs and a ‘TTC’ SCHEDULER.

 – Page 9 –

Figure 6: A schematic representation of a key components in a simple TTC SCHEDULER.

Figure 6 shows a schematic representation of a key components in such a

SCHEDULER.

The SysTick_Handler() function is responsible for keeping track of elapsed

time: in this example, this function is linked to a timer that generates interrupts

every millisecond.

Within the function PROCESSOR_Init() there will be function calls to

initialise the SCHEDULER, initialise the TASKs and then add the TASKs to the

schedule.

In function main(), the process of releasing the TASKs is carried out in the

function SCH_Dispatch_Tasks().

The operation of a typical SCH_Dispatch_Tasks() function is illustrated

schematically in Figure 7. In this figure, the Dispatcher begins by

determining whether there is a TASK that is currently due to run. If the answer

to this question is ‘yes’, the Dispatcher runs the TASK. The Dispatcher repeats

this process until there are no TASKs remaining that are due to run. The

Dispatcher then moves the PROCESSOR into a power-saving mode. The

PROCESSOR will remain in this mode until awakened by the next timer

interrupt: at this point the timer ISR – SysTick_Handler() – will be called

again, followed by the next call to the Dispatcher.

It should be noted that there is a deliberate split between the process of timer

updates and the process of TASK dispatching. This split means that it is

possible for the SCHEDULER to execute TASKs that are longer than one TICK

INTERVAL without missing TICKs. This gives greater flexibility in the system

design, by allowing use of a short TICK INTERVAL (which can make the system

more responsive) and longer TASKs (which can simplify the design process).

This split may also help to make the system a little more robust in the event

of run-time faults.

uint32_t main(void)
{
PROCESSOR_Init();

SCH_Start();

while(1)
{
SCH_Dispatch_Tasks();
}

return 1;
}

void SysTick_Handler(void)
{
Tick_count++;
}

1 ms timer

 – Page 10 –

Figure 7: The operation of a Dispatcher.

Flexibility in the design process and the ability to recover from transient faults

are two reasons why ‘dynamic’ TT designs (with a separate timer ISR and

TASK dispatch functions) are generally preferred over simpler designs in

which TASKs are dispatched from the timer ISR.

1.7. Supporting TASK pre-emption

The designs discussed in Section 1.4 and Section 1.5 involve co-operative

TASKs: this means that each TASK ‘runs to completion’ after it has been

released. In many TT designs, higher-priority TASKs can interrupt (pre-empt)

lower-priority TASKs.

For example, Figure 8 shows a set of three TASKs: Task A (low-priority), Task

B (low-priority), and Task P (high-priority). In this example, the low-priority

TASKs may be pre-empted periodically by the high-priority TASK. More

generally, this kind of ‘time triggered hybrid’ (TTH) design may involve

multiple co-operative TASKs (all with an equal low priority) and one or more

pre-empting TASKs (all with an equal high priority).

We can also create ‘time-triggered pre-emptive’ (TTP) SCHEDULERs: these

support multiple levels of TASK priority.

We can – of course – record the TICK LIST for TTH and TTP designs. For

example, the TASK sequence for Figure 8 could be listed as follows: Task P,

Task A, Task P, Task B, Task P, Task A, Task P, Task B.

We will focus in this book on TTC designs, but we will say more about TASK

pre-emption in Appendix 9 and Appendix 10.

Start Dispatcher

Run task

Determine which
task is due to run
next in this tick

(if any)

Is there a
task due to

run?

Go to sleep

End Dispatcher

No

Yes

 – Page 11 –

Figure 8: Executing TASKs using a TTH SCHEDULER. See text for details.

1.8. Supporting multiple PROCESSORs and / or multiple cores

Many designs involve the use of more than one PROCESSOR. For example, a

modern passenger car might contain 50 or more PROCESSORs, controlling

brakes, door windows and mirrors, steering, air bags, and so forth. Similarly,

an industrial fire detection system might typically have 200 or more

PROCESSORs, associated – for example – with a range of different sensors and

actuators.

When developing such ‘distributed’ designs, we need to consider issues such

as the synchronisation of the activities on the different PROCESSORs and the

transfer of data between PROCESSORs. We also need to consider how we are

going to detect (and respond to) faults on the links between PROCESSORs and

on the PROCESSORs themselves. We consider these issues in Chapter 9.

Not all multi-PROCESSOR designs are distributed in nature. In fact, many of

the systems that we will consider in this book will employ at least two

PROCESSORs that are often located on the same PCB. Such designs are

intended to facilitate cross-checking between the PROCESSORs, with the goal

of meeting safety requirements (See Figure 9).

In addition to working with multiple PROCESSORs, we may also have more than

one core inside each PROCESSOR. We say a little more about this topic in

Chapter 3.

Figure 9: An example of a DuplicaTTor design. We discuss such designs in Appendix 3.
Car image copyright © Nerthuz; licensed from Dreamstime.com.

Time

...P P P PA B A B

Tick 0 Tick 1 Tick 2 Tick 3

400 V battery supply

Drive unit

MCU A

DuplicaTTor

MCU B

CAN Bus 1
(to Central Vehicle Controller)

 – Page 12 –

1.9. Changing MODE

In all of the systems considered in this book, each PROCESSOR will support at

least one MODE, called something like ‘NORMAL mode’. However many

PROCESSORs support additional MODEs. For example, Figure 10 shows a

schematic representation of a software architecture for an aircraft system with

MODEs corresponding to the different flight stages (preparing for take off,

climbing to cruising height, etc).

In this book, we consider that the MODE is changed if the TASK set is changed.

It should therefore be clear that we are likely to have a different TICK LIST for

each MODE.

There are two particular features of these MODE changes that should be noted:

 whatever the MODE, the TASKs are always released according to a

schedule that can be validated and verified when the system is designed;

 the timing of the transition between MODEs need not be known in

advance, a fact that adds significantly to the flexibility of TT systems.

What this means in practice is that – in Figure 10 – the plane can switch

between MODEs at times that are required by the flying conditions: the timing

of such MODE transitions may vary based, for example, on the prevailing

weather and / or on the density of the air traffic during the flight. Regardless

of the timing of the MODE changes, the TASK schedule in each MODE will have

been subject to rigorous test and verification (T&V) processes at design time.

This combination of flexible behaviour combined with the ability to perform

rigorous T&V activities is a very effective way of building reliable systems.

We say more about MODEs in Chapter 8.

Figure 10: An example of a system with multiple operating MODEs.

 – Page 13 –

1.10. The need for run-time monitoring

A three-stage development process is explored in detail during the course of

this book:

 the first stage involves modelling the system (using one or more TICK

LISTs), as outlined in Section 1.5;

 the second stage involves building the system (for example, using a

simple TTC SCHEDULER, as outlined in Section 1.6);

 third stage involves adding support for run-time monitoring.

The last stage in the development process – run-time monitoring – is essential

because we need to ensure that the computer system functions correctly ‘in

the field’.

Some of the threats that we may need to consider are as follows:

 A HARDWARE FAILURE2 that may result (for example) from

electromagnetic interference, or from physical damage;

 A SOFTWARE BUG that may remain in the product even after test and

verification processes are complete;

 A DELIBERATE SOFTWARE CHANGE may be introduced into the system, by

means of ‘computer viruses’ and similar security-related attacks.

As an example of a potential fault, assume that ‘Pin 1-23’ on our

microcontroller is intended to be used exclusively by ‘Task 45’ to activate the

steering-column lock in a passenger vehicle. This lock is intended to be

engaged (to secure the vehicle against theft) only after the driver has parked

and left the vehicle. A (potentially very serious) resource-related fault would

occur if Pin 1-23 was to be activated by another TASK in the system while the

vehicle was moving at high speed.

We will explore run-time monitoring solutions in detail in Part Four.

1.11. Bending the rules

Throughout most of this book, we focus on (pure) TT designs. Under normal

operation, these designs employ a periodic interrupt to drive a SCHEDULER on

each PROCESSOR: where additional interrupt sources are employed, these are

synchronised to the TICK.

In Chapter 27 we consider ‘Quasi TT’ designs. These employ a small number

of additional (asynchronous) interrupts. Used with care, these may simplify

the design without having a significant (adverse) impact on our ability to

model or monitor the system.

2 See ‘Definitions’ in Appendix 1.

 – Page 14 –

1.12. TT Wrappers

In addition to considering Quasi TT designs, we will also consider ‘TT

Wrappers’.

TT Wrappers can be used to improve confidence in the safety of embedded

systems that include components that may have an ET architecture, may be

highly adaptive in nature (for example, because they include artificial

intelligence components, such as a neural network), and / or may not have

been originally developed for use in safety-related systems.

We say more about TT Wrappers in Chapter 20.

1.13. Case studies

This book is intended to present practical advice for developers of reliable

embedded systems. In order to ‘put theory into practice’, the book includes a

suite of representative case studies.

These studies explore the development of the following devices:

 An industrial monitoring system (IEC 61508, SIL 2)

 A domestic washing machine (IEC 60730, Class B)

 A hospital radiotherapy machine (IEC 60601-2-1; IEC 62304, Class C)

 A steering-column lock for a passenger car (ISO 26262, ASIL D)

 An aircraft jet engine (DO-178C, Level A)

1.14. Conclusions

In this chapter, we’ve provided an overview of the material that is covered in

detail in the remainder of this book.

In Chapter 2, we will introduce a first simple TT SCHEDULER.

- Page 15 -

CHAPTER 2: A simple TTC SCHEDULER

In this chapter, we explore the design and implementation of a TTC

SCHEDULER for use with sets of periodic, co-operative TASKs.

2.1. Introduction

In this chapter, we will present a simple TT ‘co-operative’ SCHEDULER.

Our discussions in this chapter will centre on a ‘TT Reference Design’

(TTRD): TTRD2-02a. As this design – an implementation of a ‘TT02’

PLATFORM (see Appendix 2) – will form the foundation for all of the

SCHEDULERs presented throughout the remainder of this book, we will explore

the operation of this TTRD in detail.

2.2. Hardware target

As noted in the Preface, the TTRDs that are discussed in this book can be

applied with a very wide range of PROCESSORs: in this chapter, the introductory

example that we present targets an MCU with an ARM Cortex-M0 core.

More specifically, we will work with an STM32F091 MCU running on a

NUCLEO-F091RC board (Figure 11).

Further information about this MCU (and all of the targets discussed in this

book) can be found in Appendix 4.

Figure 11: The NUCLEO-F091RC board that is used as the hardware target for the TTRD
discussed in this chapter. Photo by MJP.

- Page 16 -

Figure 12: An overview of the structure of the TTRD2-02a SCHEDULER.

2.3. An introduction to TTRD2-02a

TTRD2-02a implements a simple ‘Heartbeat’ example in which the

SCHEDULER is used to flash an LED (‘D2’ on the Nucleo board) with a 50%

duty cycle and a flash rate of 0.5 Hz: that is, the LED will be ‘on’ for 1 second,

then ‘off’ for one second, then ‘on’ for one second ... The example also

incorporates a switch interface (linked to ‘B1’ on the board): if the switch is

pressed, the LED will stop flashing. As with most of the designs in this book,

TTRD2-02a also includes a TASK to ‘feed’ a watchdog timer (WDT).

Figure 12 provides an overview of the structure and use of the SCHEDULER in

this example. Before we consider the internal SCHEDULER operation, we will

consider how the SCHEDULER is used, starting with the PROCESSOR_Init()

function (Code Fragment 1).

void PROCESSOR_Init(void)
 {
 PROCESSOR_Identify_Reqd_MoSt();
 PROCESSOR_Configure_Reqd_MoSt();
 }

Code Fragment 1: The PROCESSOR_Init() function from TTRD2-02a [STMF091].

As we can see in Figure 12, PROCESSOR_Init() is called at the start of

main(). This simple ‘wrapper’ function is responsible for identifying and

configuring the required MODE or STATE. We will use the same architecture

in the great majority of the examples in this book.

In TTRD2-02a, we support only one MODE (NORMAL) and one STATE

(FAIL_SAFE).

Any reset that is caused by the WDT causes the system to enter the

FAIL_SAFE STATE (see Section 2.11), while a power-on reset (and any other

reset events in this example) cause the system to enter NORMAL MODE (see

Code Fragment 2).

uint32_t main(void)
{
PROCESSOR_Init();

SCH_Start();

while(1)
{
SCH_Dispatch_Tasks();
}

return 1;
}

void SysTick_Handler(void)
{
// Increment tick count and check against limit
if (++Tick_count_g > SCH_TICK_COUNT_LIMIT)

{
// One or more tasks has taken too long to complete
PROCESSOR_Perform_Safe_Shutdown();
}

}

1 ms timer

- Page 17 -

void PROCESSOR_Identify_Reqd_MoSt(void)
 {
 // Check cause of reset
 if (RCC_GetFlagStatus(RCC_FLAG_IWDGRST) == SET)
 {
 // Reset was caused by WDT => State ‘Fail Safe’
 Processor_MoSt_g = FAIL_SAFE;
 }
 else
 {
 // Here we treat all other forms of reset in the same way
 // => Mode ‘Normal’
 Processor_MoSt_g = NORMAL;
 }

 // Clear cause-of-reset flags
 RCC_ClearFlag();
 }

Code Fragment 2: The PROCESSOR_Identify_Reqd_MoSt() function from TTRD2-02a [STMF091].

In FAIL_SAFE STATE, the system simply ‘halts’ (Code Fragment 3, Code

Fragment 4).

void PROCESSOR_Perform_Safe_Shutdown(void)
 {
 uint32_t Delay1, Delay2, Heartbeat_state;

 // Here we simply "fail safe" with rudimentary fault reporting.
 // OTHER BEHAVIOUR IS LIKELY TO BE REQUIRED IN YOUR DESIGN

 // *************************************
 // NOTE: This function should NOT return
 // *************************************

 // Set up Heartbeat LED pin
 HEARTBEAT_SW_Init();

 while(1)
 {
 // Flicker Heartbeat LED to indicate fault
 for (Delay1 = 0; Delay1 < 1000000; Delay1++)
 {
 Delay2 *= 3;
 }

 // Change the LED from OFF to ON (or vice versa)
 if (Heartbeat_state == 1)
 {
 Heartbeat_state = 0;
 GPIO_ResetBits(HEARTBEAT_LED_PORT, HEARTBEAT_LED_PIN);
 }
 else
 {
 Heartbeat_state = 1;
 GPIO_SetBits(HEARTBEAT_LED_PORT, HEARTBEAT_LED_PIN);
 }
 }
 }

Code Fragment 3: The PROCESSOR_Perform_Safe_Shutdown() function
from TTRD2-02a [STMF091].

- Page 18 -

There really isn’t very much more that we can do in this STATE in TTRD2-

02a, but – in a real system design – this is where we should end up if a serious

problem has been detected by the PROCESSOR (and no other way of handling

this problem has been identified). Deciding what to do in these circumstances

requires careful consideration during the system development process.

void PROCESSOR_Configure_Reqd_MoSt(void)
 {
 switch (Processor_MoSt_g)
 {
 // Default to "Fail Safe" state
 default:
 case FAIL_SAFE_S:
 {
 // Reset caused by iWDT
 // Trigger "fail safe" behaviour
 PROCESSOR_Perform_Safe_Shutdown();

 break;
 }

 // NORMAL mode
 case NORMAL_M:
 {
 // Set up the scheduler for 1 ms Ticks (Tick Interval in *ms*)
 SCH_Init_Milliseconds(1);

 // Set up WDT
 // Timeout is parameter * 100 µs: 25 => ~2.5 ms
 // NOTE: WDT driven by RC oscillator - timing varies with temperature
 WATCHDOG_Init(25);

 // Prepare for switch-reading task
 SWITCH_BUTTON1_Init();

 // Prepare for heartbeat task
 HEARTBEAT_SW_Init();

 // Add tasks to schedule.
 // Parameters are:
 // A. Task name
 // B. Initial delay / offset (in Ticks)
 // C. Task period (in Ticks): Must be > 0
 // A B C
 SCH_Add_Task(WATCHDOG_Update, 0, 1); // Feed watchdog
 SCH_Add_Task(SWITCH_BUTTON1_Update, 0, 10); // Switch interface
 SCH_Add_Task(HEARTBEAT_SW_Update, 0, 1000); // Heartbeat LED

 // Feed the watchdog
 WATCHDOG_Update();

 break;
 }
 }
 }

Code Fragment 4: The PROCESSOR_Configure_Reqd_MoSt() function
from TTRD2-02a [STMF091].

- Page 19 -

When the system reset is not caused by the WDT then – in this example – we

enter NORMAL MODE (Code Fragment 4).

In this MODE, we need to do the following to initialise the system:

 set up the SCHEDULER;

 call the initialisation functions for the TASKs; and,

 add the TASKs to the schedule.

In our example, we first set up the SCHEDULER with 1 ms TICKs:

SCH_Init(1);

We say more about the SCH_Init() function in Section 2.6.

Assuming that initialisation of the SCHEDULER was successful, we then set up

the WDT: we’ll provide details of this process in Section 2.11.

We then prepare for the switch-interface TASK and the ‘Heartbeat’ TASK, by

means of the SWITCH_BUTTON1_Init() and HEARTBEAT_Init()

functions. Further information is provided about these TASKs in Section 2.12

and Section 2.13 respectively.

Having called their ‘init’ functions, we then add all three TASKs to the

schedule by means of the SCH_Add_Task() function:

SCH_Add_Task(WATCHDOG_Update, 0, 1);
SCH_Add_Task(SWITCH_BUTTON1_Update, 0, 10);
SCH_Add_Task(HEARTBEAT_SW_Update, 0, 1000);

We say more about SCH_Add_Task() in Section 2.8.

2.4. The SCHEDULER components

Having summarised the startup process for TTRD2-02a, we will now consider

the implementation and operation of the SCHEDULER in more detail.

The SCHEDULER is made up of the following key components:

 a SCHEDULER data structure;

 an initialisation function;

 a function for adding TASKs to the schedule;

 an interrupt service routine (ISR), used to keep track of elapsed time;

 a Dispatcher (function) that releases TASKs when they are due to run.

We consider each of the required components in the sections that follow.

- Page 20 -

SCH_MAX_TASKS

You will find SCH_MAX_TASKS in the ‘SCHEDULER Header’ file in the majority of
designs in this book. This constant must be set to a value that is at least as large as
the number of TASKs that are added to the schedule in any of the MODEs.

This memory-allocation process is not dynamic and must be checked for each
project.

Please note that this process is deliberately static in nature, in line with the
recommendations of standards such as IEC 61508-3 (Clause C.2.6.3), ISO 26262-6
(Clause 8.4.4) and MISRA C (Dir. 4.12).

Box 3

2.5. The SCHEDULER data structure and TASK array

At the heart of TTRD2-02a is a user-defined data type (sTask) that collects

together the information required about each TASK.

Code Fragment 5 shows the sTask_t implementation used in TTRD2-02a. The

members of sTask_t are documented in Table 2.

The TASK set is then defined in the main SCHEDULER file as follows:

sTask_t SCH_tasks_g[SCH_MAX_TASKS];

// User-defined type to store required data for each task
typedef struct
 {
 // Pointer to the task (must be a 'void (void)' function)
 void (*pTask) (void);

 // Delay (Ticks) until the task will (next) be run
 uint32_t Delay;

 // Interval (Ticks) between subsequent runs.
 uint32_t Period;
 } sTask_t;

Code Fragment 5: The sTask_t data type used in the SCHEDULERs presented in this chapter.
Please refer to Table 2 for further information. [STMF091].

Table 2: The members of the sTask_t data structure (as used in TTRD2-02a).

Member Description

void (*pTask)(void) A pointer to the TASK that is to be scheduled.
The TASK must be implemented as a ‘void void’ function.
See Section 2.11 for a first simple example.

uint32_t Delay The time (in TICKs) before the TASK will next execute.

uint32_t Period The TASK period (in TICKs).

- Page 21 -

2.6. The ‘Init’ function

The SCHEDULER initialisation function is responsible for:

 initialising the TASK array; and,

 configuring the SCHEDULER TICK SOURCE.

The full function listing is given in Code Fragment 6.

The initialisation process begins by setting the pTask member of each TASK

in the SCHEDULER array to a ‘null pointer’ value:

SCH_tasks_g[Task_id].pTask = SCH_NULL_PTR;

The value represents an address at which no TASK can be stored. This address

is usually ‘0’ (and that is the case here): a constant value – SCH_NULL_PTR

– is used to make the purpose of the code more explicit (and to simplify the

process of porting the code in the future should this ever be required).

void SCH_Init_Milliseconds(const uint32_t TICKms)
 {
 for (uint32_t Task_id = 0; Task_id < SCH_MAX_TASKS; Task_id++)
 {
 // Set pTask to ‘null pointer’
 SCH_tasks_g[Task_id].pTask = SCH_NULL_PTR;
 }

 // Using CMSIS

 // SystemCoreClock gives the system operating frequency (in Hz)
 if (SystemCoreClock != REQUIRED_PROCESSOR_CORE_CLOCK)
 {
 // We treat this as a Fatal Platform Failure
 PROCESSOR_Perform_Safe_Shutdown();
 }

 // Now to set up SysTick timer for Ticks at interval TICKms
 if (SysTick_Config(TICKms * SystemCoreClock / 1000))
 {
 // Cannot configure SysTick as required
 // We treat this as a Fatal Platform Failure
 PROCESSOR_Perform_Safe_Shutdown();
 }

 // Timer is started by SysTick_Config():
 // we need to disable SysTick timer and SysTick interrupt until
 // all tasks have been added to the schedule.
 SysTick->CTRL &= 0xFFFFFFFC;
 }

Code Fragment 6: The SCH_Init_Milliseconds() function from TTRD2-02a [STMF091].

- Page 22 -

Selecting an appropriate clock source

The version of TTRD2-02a that is presented in this chapter employs an RC oscillator
as the main clock source. Such an oscillator will typically have a frequency
variation of 2% or more over the operating temperature of the device.

For an introductory example, this is not an inappropriate clock source. However,
because of the frequency variation, an RC oscillator may not be suitable as the
main oscillator for systems with ‘hard’ real-time characteristics, including designs
that need to support communication protocols such as USB.

Rather than employing an RC oscillator, most practical designs are driven by a
crystal oscillator with a frequency variation typically in the region of ‘100 ppm’ (or
better). This means ‘100 parts per million’, or a variation of around 0.01% over the
operating temperature of the device. By way of comparison, there are 86,400
seconds in a day: a system based on a basic (100 ppm) crystal oscillator might lose
8.6 seconds in a day; a system based on a 2% RC oscillator might lose 1,728
seconds (= 28 minutes) in a day.

Design choices are rarely completely straightforward. In this case, while crystal
oscillators are more stable than RC oscillators, they are also more vulnerable to
physical damage (for example, as a result of vibration). Many safety-related
designs will therefore employ a crystal oscillator as the main clock source, and will
automatically switch to an RC oscillator (and perhaps enter a LIMP-HOME PROCESSOR

MODE) if the main clock source fails. We say more about this in Chapter 13.

Box 4

The next step in the SCHEDULER initialisation process involves setting up the

timer TICKs. In TTRD2-02a, this code is based on the ARM CMSIS3. As part

of this standard, ARM provides a template file system_device.c that must be

adapted by the manufacturer of the corresponding microcontroller to match

their device.

At a minimum, system_device.c must provide:

 a device-specific system configuration function, SystemInit(); and,

 a global variable that represents the system operating frequency,

SystemCoreClock.

The SystemInit() function performs basic device configuration, including

(typically) initialisation of the oscillator unit (such as a PLL). The

SystemCoreClock value is then set to match the results of this configuration

process.

If you look closely at the Nucleo board that we are using in the introductory

SCHEDULER example that is described in this chapter (Figure 11) you will see

that the ‘X3’ crystal is missing. X3 is the external crystal oscillator and is –

by default – omitted from this board (presumably on grounds of cost).

3 Cortex® Microcontroller Software Interface Standard.

http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#ga93f514700ccf00d08dbdcff7f1224eb2
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6

- Page 23 -

Rather than requiring that readers of this book add a crystal oscillator to their

board in order to try out TTRD2-02a, the code is has been designed to operate

with the High-Speed Internal (HSI) oscillator that is incorporated in the MCU

(see Box 4). Using this RC oscillator and the PLL will allow us to reach a

48 MHz operating frequency.

We record this expected system operating frequency in main.h by means of

the constant REQUIRED_PROCESSOR_CORE_CLOCK (Code Fragment 7).

// Required system operating frequency (in Hz)
// Will be checked in the scheduler initialisation file
#define REQUIRED_PROCESSOR_CORE_CLOCK (48000000)

Code Fragment 7: Part of the SCH_Init_Milliseconds() function from TTRD2-02a [STMF091].

We then check that the system has been configured as expected, as shown in

Code Fragment 8.

// SystemCoreClock gives the system operating frequency (in Hz)
if (SystemCoreClock != REQUIRED_PROCESSOR_CORE_CLOCK)
 {
 // We treat this as a Fatal Platform Failure
 PROCESSOR_Perform_Safe_Shutdown();
 }

Code Fragment 8: Part of the SCH_Init_Milliseconds() function from TTRD2-02a [STMF091].

As suggested by this code example, we attempt to force a safe shutdown if –

for whatever reason – the system operating frequency is not as expected.

There is no ‘magic’ underlying these checks! As mentioned earlier in this

section, there is – in the background – a SystemInit() function that is called

by the system startup code, before main() is called. The SystemInit() function

is – in this case – responsible for configuring the STM32F091 HSI and PLL

to give us the required operating frequency.

The SystemInit() function can be found in the file system_stm32f0xx.c.

The setting for this file can – if required – be adjusted using the STM32F0xx

Clock Configuration tool (Figure 13).

CMSIS also provides us with a SysTick timer to drive the SCHEDULER, and a

means of configuring this timer to give the required TICK rate (Code Fragment

9). Again, we attempt to force a system shutdown if we cannot achieve the

expected rate.

Please note that SysTick_Config() starts the timer. We wish to delay the timer

start until we have completed the SCHEDULER configuration: we must therefore

stop the timer, as shown at the end of Code Fragment 9.

- Page 24 -

Figure 13: A screenshot from the STM32F0xx Clock Configuration tool.

// Now to set up SysTick timer for Ticks at interval TICKms
if (SysTick_Config(TICKms * SystemCoreClock / 1000))
 {
 // Cannot configure SysTick as required
 // We treat this as a Fatal Platform Failure
 PROCESSOR_Perform_Safe_Shutdown();
 }

 // Timer is started by SysTick_Config():
 // we need to disable SysTick timer and SysTick interrupt until
 // all tasks have been added to the schedule.
 SysTick->CTRL &= 0xFFFFFFFC;

Code Fragment 9: Part of the SCH_Init_Milliseconds() function from TTRD2-02a [STMF091].

The SysTick timer is widely used and SCHEDULER code based on this

component very easily portable between microcontroller families. However,

other timers can also be used (without difficulty) to generate the TICK, if

required.

2.7. The ‘Update’ function

Code Fragment 10 shows the SCHEDULER ISR.

This function ensures that the SCHEDULER can keep track of elapsed time (by

incrementing the ‘tick count’ variable): it also uses the same variable to

perform a monitoring function.

void SysTick_Handler(void)
 {
 // Increment tick count and check against limit
 if (++Tick_count_g > SCH_TICK_COUNT_LIMIT)
 {
 // One or more tasks has taken too long to complete
 PROCESSOR_Perform_Safe_Shutdown();
 }
 }

Code Fragment 10: The SysTick_Handler function from TTRD2-02a [STMF091].

- Page 25 -

Figure 14: In most TTC designs, we expect that all TASKs released in a given TICK will complete their
execution by the end of the TICK.

Figure 15: A system design in which the TASKs released in the first TICK INTERVAL have a combined
execution time that exceeds the TICK INTERVAL. As this does not (in this case) have any impact on
the release of subsequent TASKs (Task C, Task D, …), this behaviour may be acceptable in many

designs, not least where Task B has a highly-variable execution time.

Figure 16: The TASK set from Figure 15, in a situation where Task B exceeds its expected WCET.

To understand the monitoring operation that is performed in the ISR, it should

be noted in the majority of TTC designs we expect all TASKs that are released

in a TICK INTERVAL to complete before the next TICK (Figure 14). In these

circumstances, SCH_TICK_COUNT_LIMIT will be set (in the SCHEDULER

header file) to a value of 1:

// Usually set to 1, unless 'Long Tasks' are employed
#define SCH_TICK_COUNT_LIMIT (1)

In some TTC designs we will expect to release a set of TASKs that have a

combined ‘worst-case execution time’ (WCET) that may exceed the TICK

INTERVAL: see Figure 15. In these circumstances, we can use a larger tick-

count limit. For example, the design illustrated in Figure 15 may be

configured as follows:

#define SCH_TICK_COUNT_LIMIT (2)

This would allow the TASK set to execute as illustrated, but would detect

situations in which a longer Task B started to interfere with the execution of

Task E. For example, in Figure 16, the variable Tick_count_g would reach a

value of 3 before Task E was released (causing the system to enter the STATE

FAIL_SAFE in this case).

Time

...A C E GB D F H

Total (maximum) task execution time

Tick interval

Time

...A C EB D F

Time

A B

Tick_count_g limit exceeded:
enter Fail-Safe STATE

- Page 26 -

2.8. The ‘Add Task’ function

As the name is intended to suggest, the ‘Add Task’ function – Code Fragment

11 – is used to add TASKs to the schedule.

The function parameters are (again) as detailed in Table 2.

void SCH_Add_Task(void (* pTask)(),
 const uint32_t DELAY,
 const uint32_t PERIOD)
 {
 uint32_t Task_id = 0;

 // First find a gap in the array (if there is one)
 while ((SCH_tasks_g[Task_id].pTask != SCH_NULL_PTR)
 && (Task_id < SCH_MAX_TASKS))
 {
 Task_id++;
 }

 // Have we reached the end of the list?
 if (Task_id == SCH_MAX_TASKS)
 {
 // Task array is full - we treat this as a Fatal Platform Failure
 PROCESSOR_Perform_Safe_Shutdown();
 }

 // Check for ‘one shot’ tasks
 if (PERIOD == 0)
 {
 // We do not allow ‘one shot’ tasks (all tasks must be periodic)
 // We treat this as a Fatal Platform Failure
 PROCESSOR_Perform_Safe_Shutdown();
 }

 // If we're here, there is a space in the task array
 // and the task to be added is periodic
 SCH_tasks_g[Task_id].pTask = pTask;

 SCH_tasks_g[Task_id].Delay = DELAY + 1;
 SCH_tasks_g[Task_id].Period = PERIOD;
 }

Code Fragment 11: The ‘Add Task’ function from TTRD2-02a [STMF091].

Please note that:

 if an attempt is made to add too many TASKs to the schedule (see Box 3,

p.20), the PROCESSOR shuts down;

 only periodic TASKs are supported in this SCHEDULER (and throughout

this book); this helps to ensure that the activities on each PROCESSOR can

be readily modelled (at design time) and monitored (at run time), as we

will demonstrate in later chapters.

- Page 27 -

2.9. The Dispatcher

The release of the TASKs is carried out in the function SCH_Dispatch_Tasks():

Figure 12 shows this function in context, and Code Fragment 12 presents the

source.

void SCH_Dispatch_Tasks(void)
 {
 __disable_irq();
 uint32_t Update_required = (Tick_count_g > 0); // Check tick count
 __enable_irq();

 while (Update_required)
 {
 // Go through the task array
 for (uint32_t Task_id = 0; Task_id < SCH_MAX_TASKS; Task_id++)
 {
 // Check if there is a task at this location
 if (SCH_tasks_g[Task_id].pTask != SCH_NULL_PTR)
 {
 if (--SCH_tasks_g[Task_id].Delay == 0)
 {
 (*SCH_tasks_g[Task_id].pTask)(); // Run the task

 // All tasks are periodic: schedule task to run again
 SCH_tasks_g[Task_id].Delay = SCH_tasks_g[Task_id].Period;
 }
 }
 }

 __disable_irq();
 Tick_count_g--; // Decrement the count
 Update_required = (Tick_count_g > 0); // Check again
 __enable_irq();
 }

 // The scheduler enters idle mode at this point
 __WFI();
 }

Code Fragment 12: The Dispatcher from TTRD2-02a [STMF091].

Please note that in Code Fragment 12 we have a ‘shared resource’

(Tick_count_g) that is accessed from both the SCHEDULER ISR and the

Dispatcher. Such resources need to be protected, and the disabling of

interrupts before Tick_count_g is accessed in the Dispatcher meets this

requirement in an appropriate manner.

In most designs (such as that represented by Figure 14), the SCHEDULER

operation is as follows (see Figure 17):

 the PROCESSOR is paused in idle mode (it enters this mode at the end of

the Dispatcher, see the final lines in Code Fragment 12);

 the TICK ‘wakes’ the PROCESSOR and triggers the SCHEDULER ISR, which

causes Tick_count_g variable to be incremented and checked (Code

Fragment 10);

- Page 28 -

Figure 17: A schematic representation of the SCHEDULER operation.

 assuming that the value of Tick_count_g is within the allowed range, the

ISR ends and the Dispatcher starts again (Code Fragment 12);

 within the dispatcher, the value of Tick_count_g is checked and, if this

value is greater than 0, the Dispatcher goes through the TASK array in

order, updating the ‘delay’ values for each TASK and releasing any TASKs

that are due to run;

 having completed the SCHEDULER update process, the PROCESSOR enters

idle mode at the end of the Dispatcher, and the process repeats.

It may seem that the process of checking the value of Tick_count_g at the

start of the Dispatcher (and the setting of the Update_required flag) is

unnecessary. However, it is possible that the SCHEDULER has not entered idle

mode correctly: see Figure 18. Alternatively, the system could be wakened

from idle mode by an event other than the SCHEDULER ISR. Without the

Update_required flag – or a similar mechanism – it is possible that TASK

updates would be carried out more frequently than required in these

circumstances. The checks of the value of Tick_count_g are intended to

reduce the risk of such problems.

We also need to repeat these checks at the end of the Dispatcher in order to

handle TASKs that are still running when the TICK is generated.

Use of idle mode is an important way of controlling jitter (very precisely) in

a TTC design, because it allows us to place both the hardware and software

into a known configuration. This means that the response time to the timer

ISR is (in most MCU architectures) of a fixed duration. For example, in the

STM32F091 MCU that is the target for version of TTRD2-02a that is

presented in this chapter, the response time to the timer ISR when in idle mode

is precisely 20 clock cycles: we would therefore expect to see no TICK jitter.

Dispatcher
[Tick_count_g--]

Timer ISR
[Tick_count_g++]

Wake up CPU

Place CPU in Idle mode

- Page 29 -

Figure 18: If the system does not enter idle mode, the Dispatcher may be called more frequently
than intended. Checks of the value of Tick_count_g are used to detect this.

We say more about jitter in real-time systems in Appendix 6. We discuss

techniques for measuring such jitter in Appendix 7.

2.10. The ‘Start’ function

The SCHEDULER Start function (Code Fragment 13) is called after all of the

required TASKs have been added to the schedule.

void SCH_Start(void)
 {
 // Enable SysTick timer
 SysTick->CTRL |= 0x01;

 // Enable SysTick interrupt
 SysTick->CTRL |= 0x02;
 }

Code Fragment 13: The SCH_Start() function from TTRD2-02a. This function should be called
after all required Tasks have been added to the schedule [STMF091].

SCH_Start() starts the SCHEDULER timer, and enables the related interrupt.

2.11. Watchdog timer support

TTRD2-02a includes a TASK to ‘feed’ the watchdog timer that is incorporated

in the PROCESSOR: this is an ‘internal WDT’, or ‘iWDT’. As in the majority

of other examples in this book, the iWDT is used in TTRD2-02a: [i] to detect

situations in which the SCHEDULER is not operating; and [ii] to trigger a move

into a FAIL-SAFE PROCESSOR STATE in these circumstances.

The initialisation function and TASK that make up the TASK MODULE for the

iWDT are shown in Code Fragment 14. In TTRD2-02a, we set the iWDT

timeout to around 2.5 TICKs, and we ‘feed’ the timer at the start of each TICK

(Figure 19).

Please note that – in a practical design – we would usually aim to use different

clock sources for the SCHEDULER and the iWDT: this usually means that we

use a crystal oscillator as the clock source for the SCHEDULER, and an RC

oscillator to drive the iWDT. As we discussed in Box 4 (p. 22) the stability

of RC oscillators is comparatively limited: this means that it is rarely possible

to rely on the WDT for precise timing control, and a ‘2.5 TICK’ timeout is

usually an effective starting point.

Dispatcher
[Tick_count_g--]

Timer ISR
[Tick_count_g++]

- Page 30 -

Figure 19: Running a WDT refresh TASK (shown as Task W) at the start of each TICK INTERVAL.

iWDTs are key components in most systems. Unfortunately, in the author’s

experience, they are very often misused (even in designs that are intended to

be safety related). We will say more about the effective use of these simple

but important timers in Chapter 16.

2.12. The ‘Switch’ TASK

We view the process of feeding the iWDT as a ‘core TASK’ (that will be

employed on virtually every system). TTRD2-02a also incorporates two

simple ‘user TASKs’.

The first user TASK is designed to read the state of a switch that is connected

to our microcontroller. In this case, the switch used in the example is ‘B1’

(which is identified in Figure 11).

B1 is connected on the Nucleo board (essentially) as illustrated in Figure 20.

In an ideal world, pressing this button would give rise to a waveform at the

port pin which looks something like that illustrated in Figure 21 (top). In

practice, all mechanical switch contacts bounce after the switch is closed or

opened. As a result, the actual input waveform will look more like that shown

in Figure 21 (bottom). Usually, switches bounce for less than 20 ms (and this

is what we would expect from B1): however large mechanical switches

exhibit bounce behaviour for 50 ms or more.

Code Fragment 15 and Code Fragment 16 present the core of the switch-

interface TASK MODULE. Code Fragment 16 includes the switch-interface

TASK itself – SWITCH_BUTTON1_Update() – that will be called

periodically and will report a switch press only after a ‘stable’ reading has

been obtained from the hardware.

Figure 20: A typical switch connection to a microcontroller. Note that – in practice – the input
may be ‘opto isolated’ (or have some equivalent protection): such an interface would not have an

impact on the software architecture that is discussed here.

Time

...W A B C DW W W

- Page 31 -

void WATCHDOG_Init(const uint32_t WDT_COUNT)
 {
 // Enable write access to IWDG_PR and IWDG_RLR registers
 IWDG->KR = 0x5555;

 // Set pre-scalar to 4 (‘tick’ is ~100 µs)
 IWDG->PR = 0x00;

 // Counts down to 0 in increments of 100 µs
 // Max reload value is 0xFFF (4095) or ~410 ms (with this prescalar)
 IWDG->RLR = WDT_COUNT;

 // Reload IWDG counter
 IWDG->KR = 0xAAAA;

 // Enable IWDG (the LSI oscillator will be enabled by hardware)
 IWDG->KR = 0xCCCC;

 // Feed watchdog
 WATCHDOG_Update();
 }

/*-------------------*/

void WATCHDOG_Update(void)
 {
 // Feed the watchdog (reload IWDG counter)
 IWDG->KR = 0xAAAA;
 }

Code Fragment 14: The core of the WDT module from TTRD2-02a [STMF091].

Figure 21: The voltage signal resulting from a mechanical switch. [Top] Idealised waveform

resulting from a switch depressed at time t1 and released at time t2 [Bottom] Actual waveform
showing leading edge bounce following switch depression and trailing edge bounce following

switch release.

- Page 32 -

// Allows NO or NC switch to be used (or other wiring variations)
#define SW_PRESSED (0)

// SW_THRES must be > 1 for correct debounce behaviour
#define SW_THRES (3)

// The current switch state (see Init function)
static uint32_t Switch_button1_pressed_g;

/*-------------------*/

void SWITCH_BUTTON1_Init(void)
 {
 GPIO_InitTypeDef GPIO_InitStruct;

 // Enable GPIOC clock (bit 19)
 RCC->AHBENR |= (1UL << 19);

 // Configure the switch pin
 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN;
 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_Level_1;
 GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
 GPIO_InitStruct.GPIO_Pin = BUTTON1_PIN;

 GPIO_Init(BUTTON1_PORT, &GPIO_InitStruct);

 // Set the initial state
 Switch_button1_pressed_g = BUTTON1_NOT_PRESSED;
 }

Code Fragment 15: The core of the ‘Switch’ module from TTRD2-02a, Part 1 of 2 [STMF091]

Please note that the structure of this TASK MODULE is the same as the Heartbeat

module: that is, we have an ‘Init’ function and an ‘Update’ function (the TASK

itself). This is the core structure that we will see for most TASK MODULEs in

this book.4 In addition, most of our modules will also include ‘Get’ / ‘Set’

functions: in this case, we have a Get function for accessing the switch state.

We will say a little more about Get and Set functions in Section 2.14.

2.13. The ‘Heartbeat’ TASK

Many PLATFORMs benefit from the inclusion of a ‘Heartbeat’ LED.

This is usually implemented by means of a TASK that flashes an LED on and

off, with a 50% duty cycle and a frequency of 0.5 Hz: that is, the LED is on

for one second, off for one second, on for one second …

Use of this simple reporting mechanism ensures that the development team,

the maintenance team and, where appropriate, the users, can tell at a glance

that the system has power, and that the SCHEDULER is operating normally.

The Heartbeat module from TTRD2-02a is shown in Code Fragment 17.

4 Some modules may also require a ‘Deinit’ function (see Chapter 8) and / or an interface

that supports testing, including fault injection (see Chapter 13).

- Page 33 -

void SWITCH_BUTTON1_Update(void)
 {
 // Duration of switch press
 static uint32_t Duration_s = 0;

 // Read the pin state
 uint32_t Button1_input = GPIO_ReadInputDataBit(BUTTON1_PORT, BUTTON1_PIN);

 if (Button1_input == SW_PRESSED)
 {
 Duration_s += 1;

 if (Duration_s > SW_THRES)
 {
 Duration_s = SW_THRES;

 Switch_button1_pressed_g = BUTTON1_PRESSED;
 }
 else
 {
 // Switch pressed, but not yet for long enough
 Switch_button1_pressed_g = BUTTON1_NOT_PRESSED;
 }
 }
 else
 {
 // Switch not pressed – reset the count
 Duration_s = 0;

 // Update status
 Switch_button1_pressed_g = BUTTON1_NOT_PRESSED;
 }
 }

/*-------------------*/

uint32_t SWITCH_BUTTON1_Get_State(void)
 {
 return Switch_button1_pressed_g;
 }

Code Fragment 16: The core of the ‘Switch’ module from TTRD2-02a, Part 2 of 2 [STMF091].

In Code Fragment 17, the Heartbeat TASK incorporates a link to the switch-

interface TASK (Section 2.12), by means of which we ensure that the LED

stops flashing if the switch is pressed.

2.14. Transferring data between TASKs

In previous introductory texts (and the previous edition of this book), the

author has used global variables as a means of transferring data between

TASKs.

In the present text, we have a focus on the development of reliable and

(potentially) safety-related systems: in such environments, we would

generally wish to make limited use of global variables. For example,

ISO 26262-6 (Table 8) recommends that global variables are avoided (or their

use justified) in all safety-related designs (from ‘ASIL A’ to ‘ASIL D’).

- Page 34 -

void HEARTBEAT_SW_Init(void)
 {
 GPIO_InitTypeDef GPIO_InitStruct;

 // Enable GPIOA clock (bit 17)
 RCC->AHBENR |= (1UL << 17);

 // Configure port pin for the LED
 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
 GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_Level_1;
 GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
 GPIO_InitStruct.GPIO_Pin = HEARTBEAT_LED_PIN;

 GPIO_Init(HEARTBEAT_LED_PORT, &GPIO_InitStruct);
 }

/*-------------------*/

void HEARTBEAT_SW_Update(void)
 {
 static uint32_t Heartbeat_state_s = 0;

 // Check switch (Button 1) state
 if (SWITCH_BUTTON1_Get_State() == SWITCH_NOT_PRESSED)
 {
 // Switch is *not* pressed: normal 'heartbeat' behaviour

 // Change the LED from OFF to ON (or vice versa)
 if (Heartbeat_state_s == 1)
 {
 Heartbeat_state_s = 0;
 GPIO_ResetBits(HEARTBEAT_LED_PORT, HEARTBEAT_LED_PIN);
 }
 else
 {
 Heartbeat_state_s = 1;
 GPIO_SetBits(HEARTBEAT_LED_PORT, HEARTBEAT_LED_PIN);
 }
 }
 }

Code Fragment 17: The core of the ‘Heartbeat’ module from TTRD2-02a [STMF091]

In place of global variables, we employ ‘private’ variables in each TASK

module, and provide ‘Get’ and / or ‘Set’ functions to access these data. It is

expected that such a Get / Set arrangement will be familiar to the majority of

readers of this book.

As an example, Code Fragment 17 shows use of the

SWITCH_BUTTON1_Get_State() function to read the state of the switch: the

full function definition can be found in Code Fragment 16.

2.15. Conclusions

In this chapter, we’ve introduced a simple but flexible SCHEDULER for use with

sets of periodic co-operative TASKs. This design will form the foundation for

all of the SCHEDULERs presented throughout the remainder of this book.

In Part Two, we start to look at the design of effective TASKs for use with TT

systems.

- Page 35 -

2.16. Further reading

Mwelwa, C. and Pont, M.J. (2003) ‘Two new patterns to support the development of

reliable embedded systems’ Paper presented at the Second Nordic Conference

on Pattern Languages of Programs, (‘VikingPLoP 2003’), Bergen, Norway,

September 2003.

Pont, M.J. (2001) ‘Patterns for Time-Triggered Embedded Systems: Building

Reliable Applications with the 8051 Family of Microcontrollers’, Addison-

Wesley / ACM Press. ISBN: 0-201-331381.

Pont, M.J. and Ong, H.L.R. (2003) ‘Using watchdog timers to improve the

reliability of TTCS embedded systems’, in Hruby, P. and Soressen, K. E.

[Eds.] Proceedings of the First Nordic Conference on Pattern Languages of

Programs, September, 2002 (‘VikingPloP 2002’), pp.159-200. Published by

Microsoft Business Solutions. ISBN: 87-7849-769-8.

