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Preface 

This book is concerned with the development of reliable, real-time embedded 

systems.  The particular focus is on the engineering of systems based on ‘Time 

Triggered’ software architectures. 

In the remainder of this preface, I attempt to provide answers to questions that 

prospective readers may have about the book contents. 

a. What is a ‘reliable embedded system’? 

My goal in this book is to present a model-based process for the development 

of embedded applications that can be used to provide evidence that the system 

concerned will be able to determine at run time that it has entered an 

ABNORMAL PLATFORM STATE1 and handle this situation in a manner that reduces 

the risk of UNCONTROLLED PLATFORM FAILUREs to an acceptable level.   

The end result is what I mean by a reliable embedded system. 

b. Who needs reliable embedded systems? 

Techniques for the development of reliable embedded systems are – clearly – 

of great concern in safety-critical markets (e.g. the automotive, medical, rail 

and aerospace industries), where an UNCONTROLLED PLATFORM FAILURE may 

have immediate, fatal, consequences.   

The growing challenge of developing complicated embedded systems in 

traditional ‘safety’ markets has been recognised, a fact that is reflected in the 

emergence in recent years of new (or updated) international standards and 

guidelines, including IEC 61508, ISO 26262 and DO-178C.   

As products incorporating embedded PROCESSORs become ever more 

ubiquitous, safety concerns now have a great impact on developers working 

on devices that would not – at one time – have been thought to require a very 

formal design, implementation and test process.  As a consequence, even 

development teams working on apparently ‘simple’ household appliances 

now need to address safety concerns.  For example, manufacturers need to 

ensure that the door of a washing machine cannot be opened by a child during 

a ‘spin’ cycle, and must do all they can to avoid the risk of fires in ‘always 

on’ applications, such as fridges and freezers.  Again, recent standards have 

emerged in these sectors (such as IEC 60730). 

  

                                                      
1  Definitions for terms that appear within the text in SMALL CAPITALS (such as ABNORMAL 

PLATFORM STATE and UNCONTROLLED PLATFORM FAILURE) can be found in Appendix 1. 
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Reliability is – of course – not all about safety (in any sector).  Subject to 

inevitable cost constraints, most manufacturers wish to maximise the 

reliability of the products that they produce, in order to reduce the cost of 

warranty repairs, minimise product recalls and ensure repeat orders.   

As systems grow more complicated, ensuring the reliability of embedded 

systems can present significant challenges for any organisation. 

c. Why work with Time-Triggered systems? 

As noted at the start of this Preface, the focus of this book is on TT SYSTEMs. 

Implementation of software for a TT SYSTEM will typically start with a single 

interrupt that is linked to the periodic overflow of a timer.  This interrupt may 

drive a SCHEDULER (a simple form of ‘operating system’).  The SCHEDULER will 

– in turn – release the TASKs at predetermined points in time.   

A TT architecture can be viewed as a subset of a more general event-triggered 

(ET) architecture.  Implementation of a system with an ET architecture will 

typically involve use of multiple interrupts, each associated with specific 

periodic events (such as timer overflows) or aperiodic events (such as the 

arrival of messages over a communication bus at unknown points in time).   

TT approaches provide an effective foundation for reliable real-time systems 

because it is possible to model the expected system behaviour precisely.  This 

means that: [i] during the development process, it is possible to demonstrate 

that all of the requirements have been met; and [ii] at run time, problems can 

be detected very quickly.   

The end result is that we can have a high level of confidence that a TT System 

will either: [i] operate precisely as required; or [ii] react appropriately if a 

problem occurs. 

d. How does this book relate to international safety standards? 

Throughout this book it is assumed that many readers will be developing 

embedded systems in compliance with one or more international standards. 

The standards discussed during this book include those listed in Table 1: full 

references to these standards are given on Page xxiii. 

 

No detailed knowledge of any of these standards is required in order to read 

this book.   
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Table 1: A rough comparison of the different ‘Safety Integrity Levels’ (SILs) in some of the 
international safety standards and guidelines that are considered in this book. 

Generic 
(IEC 61508) 

(SIL 0) SIL 1 SIL 2 SIL 3 SIL 4 

Civil Aerospace  
(DO-178C) 

Level E Level D Level C Level B Level A 

Medical 
(IEC 62304) 

Class A Class B Class C 

Automotive 
(ISO 26262) 

QM ASIL A ASIL B / 

ASIL C 
ASIL D -- 

Machinery 
(ISO 13849) 

PL a PL b / PL c PL d PL e -- 

Household 
(IEC 60730) 

Class A Class B Class C -- 

 

e. What microcontroller hardware is used in this book? 

Most of the code examples in the book target microcontrollers (MCUs) from 

STMicroelectronics (STM32F0, STM32F4), NXP / Freescale (LPC17xx), 

Infineon (XMC4000), and Texas Instruments (TMS570). 

For safety-related projects, I would aim to employ an MCU with a PROCESSOR 

SAFETY MANUAL where this is possible.  Such a manual is available for the 

majority of the MCUs that I consider in this book. 

Where safety is not a direct concern, the techniques presented in this book 

with virtually any MCU.   

I say more about selection of suitable MCUs for your project in Appendix 4. 

f. What programming language is used? 

The software in this book is implemented almost entirely in ‘C’.   

g. Where can I find the code examples? 

This book is accompanied by a set of ‘Time-Triggered Reference Designs’ 

(TTRDs).  The latest set of TTRDs can be found here: 

https://www.safetty.net/ttrds  

  

https://www.safetty.net/ttrds
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h. Is the code ‘freeware’? 

Both the TTRDs and this book describe implementations of patented 

technology and are subject to copyright and other restrictions. 

The TTRDs provided with this book may be used without charge:  

[i] by universities and colleges in courses for which a degree up to and 

including ‘MSc’ level (or equivalent) is awarded; [ii] for non-commercial 

projects carried out by individuals and hobbyists. 

All other use of any of the TTRDs or patented technology associated with this 

book requires purchase of an appropriate ReliabiliTTy Technology Licence: 

https://www.safetty.net/reliabilitty-technology-licences   

i. How does this book relate to ‘ERES’? 

In 2014, I planned to write a number of ‘ERES’ books, each with a focus on 

a different market sector (e.g. household goods, automotive, industry).  The 

aim was to focus each book on an appropriate MCU target. 

Inevitably, as I began to get a new company off the ground and support a 

number of challenging new customer projects, I found that I had no time to 

create more than one book. 

When writing ‘ERES2’ I have tried to be more realistic: I planned for a single 

book, covering a wider range of sectors and MCUs. 

The end result is that the techniques presented in the present book are – at 

times – a little more advanced than those presented in ERES. 

j. Do you plan to write any further books? 

You’ll find up-to-date information about any future books here: 

https://www.safetty.net/publications  

k. Can you help us build our TT system? 

Through my company – SafeTTy Systems Ltd – I have helped many 

companies to develop embedded systems using TT software architectures. 

Please visit the company website for further information about the products, 

technology and services that we offer: https://www.safetty.net/  

l. Did you take all of the photographs? 

Various photographs and other images that appear in this book are used under 

a licence from Dreamstime.com or iStockphoto. 

https://www.safetty.net/reliabilitty-technology-licences
https://www.safetty.net/publications
https://www.safetty.net/
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PART ONE: INTRODUCTION 

 

 

“Everything should be made as simple as possible but no 

simpler.” 

Albert Einstein 

 

 

 

 
While this quotation has been widely attributed to Einstein, it is not 

clear that he ever actually used this precise form of words.  The 

underlying sentiments have a lot in common with what is usually 

called ‘Occam’s Razor’.  William of Ockham (c. 1287–1347) was an 

English Franciscan monk.  His ‘razor’ states that – when selecting 

between competing hypotheses – the one that requires the fewest 

assumptions should be selected. 
 

 

http://en.wikipedia.org/wiki/William_of_Ockham
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CHAPTER 1: Introduction 

This chapter provides an overview of the material that is covered in detail in 

the remainder of this book.   

 

Figure 1: The engineering of reliable real-time embedded systems (overview).  In this book, our 
focus will be on the stages shown on the right of the figure (grey arrows). 

1.1. Introduction 

The process of engineering reliable, real-time, embedded systems is 

summarised schematically in Figure 1.  Projects will typically begin by 

recording the requirements for safety, security and general system operation.  

The impact of potential faults and hazards will be considered.  Design and 

implementation processes will then follow, during and after which test and 

verification activities will be carried out (in order to confirm that the various 

requirements have been met in full).  Run-time monitoring will then be 

performed as the system operates.   

The particular focus of this book is on the development of software for this 

type of system using time-triggered (TT) architectures.   

What distinguishes TT approaches is that it is possible to model the expected 

system behaviour precisely.  This means that: [i] during the development 

process, it is possible to demonstrate that all of the requirements have been 

met; and [ii] at run time, problems can be detected very quickly.   

The end result is that we can have a high level of confidence that a TT SYSTEM 

will either: [i] operate precisely as required; or [ii] react appropriately if a 

problem occurs. 

In this chapter, we explain what a TT software architecture is, and we consider 

some of the processes involved in developing such systems: these processes 

will then be explored in detail in the remainder of the text. 

  

Requirements
(general) 

Impact 
of Faults 
& Hazards

Requirements
(safety & 
security)

Real-time 
embedded 

system

Design & 
implement

Test & verify  

Run-time
monitoring
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1.2. Single-program, real-time embedded systems 

An embedded computer system (‘embedded system’) is usually based on one 

or more PROCESSORs (for example, microcontrollers or microprocessors), and 

some software that will execute on embedded PROCESSOR(s).  Such 

PROCESSORs provide capabilities such as ‘anti-lock’ behaviour for brake 

controllers in passenger vehicles, and the features that have transformed basic 

mobile phones into ubiquitous ‘smartphones’ in recent years.   

The focus in this text is on what are sometimes called ‘single-program’ 

embedded systems such as engine controllers for aircraft, steer-by-wire 

systems for passenger cars, patient monitoring devices in a hospital 

environment, automated door locks on railway carriages, and controllers for 

domestic washing machines.  These systems can be labelled ‘single-program’ 

because the general user is not able to change the software on the system (in 

the way that ‘apps’ are added to a smartphone): instead, any upgrades to the 

steering system – for example – will be performed as part of a service 

operation, by suitably-qualified technicians.   

What also distinguishes the systems above (and those discussed throughout 

this book) is that they have real-time characteristics. 

Consider, for example, the greatly simplified aircraft autopilot application 

illustrated schematically in Figure 2.  Here we assume that the pilot has 

entered the required course heading, and that the system must make regular 

and frequent changes to the rudder, elevator, aileron and engine settings (for 

example) in order to keep the aircraft following this path.    

An important characteristic of this system is the need to process inputs and 

generate outputs at pre-determined time intervals, on a time scale measured 

in milliseconds.  In this case, even a slight delay in making changes to the 

rudder setting (for example) may cause the plane to oscillate very 

unpleasantly or, in extreme circumstances, even to crash.   

In order to be able to justify the use of the aircraft system in practice (and to 

have the autopilot system certified), it is not enough simply to ensure that the 

processing is ‘as fast as we can make it’: in this situation, as in many other 

real-time applications, the key characteristic is deterministic processing.  

What this means is that in many real-time systems we need to be able to 

guarantee that a particular activity will always be completed within – say – 

2 ms (+/- 5 µs), or at 6 ms intervals (+/- 1 µs): if the processing does not match 

this specification, then the application is not just slower than we would like, 

it is simply not fit for purpose.   
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Reminder    

1 second (s) = 1.0 s  = 100 s  = 1000 ms 

1 millisecond (ms) = 0.001 s = 10-3 s = 1000 µs 

1 microsecond (µs) = 0.000001 s = 10-6 s = 1000 ns 

1 nanosecond (ns) = 0.000000001 s = 10-9 s  

Box 1 

 

 
Figure 2: A high-level schematic view of an autopilot system. 

1.3. Working with TASKs 

A TASK is a named blocks of program code that perform a particular activity 

(for example, a TASK may check to see if a switch has been pressed): TASKs 

are often implemented as functions in programming languages such as ‘C’ 

(and this is the approached followed in the present book).  
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1.4. TT vs. ET architectures 

Two software architectures are used in modern embedded systems: these can 

be labelled as ‘event triggered’ (ET) and ‘time triggered’ (TT).  The key 

differences between ET and TT systems arises from the way that the TASKs 

are released.   

For many developers, ET architectures are more familiar.  A typical ET design 

will be required to handle multiple interrupts.  For example, interrupts may 

arise from periodic timer overflows, the arrival of messages on a CAN bus, 

the pressing of a switch, the completion of an analogue-to-digital conversion 

and so on.  To create such systems, the developer may employ a TASK to 

handle each event directly: this may involve creating an ‘interrupt service 

routine’ (ISR) to deal with each event.  The developer may also decide to 

employ a conventional real-time operating system (RTOS) to support the 

event handling.  Whether an RTOS is used or not, the end result is the same: 

the system must be designed in such a way that TASK releases – which may 

occur at ‘random’ points in time, and in various combinations – can be 

handled correctly.   

We take the view in this book that a key advantage of ET designs is that they 

are easy to build.  On the other hand, a key challenge with ET designs is that 

there may be a very large number of possible system states: this can make it 

difficult to verify that the system will always operate correctly. 

The alternative to an event-triggered architecture is a time-triggered (‘TT’) 

architecture.  When saying that an embedded system has a TT architecture we 

mean that it executes at least one set of TASKs according to a predetermined 

schedule.  The TASKs must have: [i] well-defined functional behaviour, and 

[ii] well-defined timing behaviour.  The schedule will determine the order of 

the TASKs are released, the time at which each TASK is released, and whether 

one TASK can interrupt (pre-empt) another TASK.   

In most cases, the starting point for the implementation of a TT design is a 

‘bare metal’ software framework: that is, the system will not usually employ 

a conventional RTOS, Linux™ or Windows®.  In the software framework, a 

single interrupt will be used, linked to the periodic overflow of a timer.  A 

‘polling’ process will then allow interaction with peripherals. 

We view such TT designs as a ‘safer subset’ of a more general class of ET 

design (see Figure 3 and Figure 4).   

A key advantage of TT designs is that it is (compared with an equivalent ET 

design) easy to verify that the system will operate correctly.  However, we 

accept that – for teams that lack experience – it can often be more challenging 

to build a TT design than an equivalent ET design. 
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Figure 3: Safer language subsets (for example, MISRA C) are employed by many organisations in 
order to improve system reliability.  See MISRA (2012). 

 

Figure 4: In a manner similar to MISRA C (Figure 3), TT approaches provide a ‘safer subset’ of ET 
designs, at the system architecture level. 

Our goal in this book is to explore a range of techniques that can facilitate the 

development of reliable embedded systems using TT software architectures. 

1.5. Modelling system timing characteristics 

In a TT System, each PROCESSOR releases TASKs in accordance with a 

predetermined TASK schedule.  For example, Figure 5 shows a set of TASKs 

(in this case Task A, Task B, Task C and Task D) that might be executed by 

a TT SYSTEM.   

In Figure 5, the release of each sub-group of TASKs (for example, Task A and 

Task B) is triggered by what is usually called a TICK.  In most designs with a 

single PROCESSOR, the TICK is implemented by means of a periodic timer 

interrupt.  In an aerospace application, the TICK INTERVAL (that is, the time 

interval between timer TICKs) of 25 ms might be used, but shorter TICK 

INTERVALs (e.g. 1 ms or 100 µs) are more common in other systems.   

 

Figure 5: A set of TASKs being released according to a pre-determined schedule. 
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The importance of TICK LISTs 

The creation and use of TICK LISTs is central to the engineering of reliable TT 
systems.   

Through the use of this simple model, we can determine key system characteristics 
– such as response times, TASK jitter levels (see Appendix 6) and maximum CPU 
loading – very early in the design process.   

We can then continue to check these characteristics throughout the development 
process, and during run-time operation of the system. 

We will consider the use of TICK LISTs in detail in Chapter 11. 

Box 2 

In Figure 5, the TASK sequence executed by the PROCESSOR is as follows: 

Task A, Task C, Task B, Task D.  In many designs, such a TASK sequence will 

be determined at design time (to meet the system requirements) and will be 

repeated ‘forever’ when the system runs, unless: [i] the system changes MODE; 

[ii] the system is powered down; or [iii] a System Failure occurs.   

Sometimes it is helpful (not least during the design process) to think of this 

TASK sequence as a TICK LIST: such a list lays out the sequence of TASKs that 

will run after each TICK.   

For example, the TICK LIST corresponding to the TASK set shown in Figure 5 

could be represented as follows: 

[Tick 0] 
Task A 
Task C 
[Tick 1] 
Task B 
Task D 
 

Once the system reaches the end of the TICK LIST, it starts again at the 

beginning. 

In Figure 5, the TASKs are co-operative (or ‘non-pre-emptive’) in nature: each 

TASK must complete before another TASK can execute.  The design shown in 

these figures can be described as ‘time triggered co-operative’ (TTC) in 

nature.   

We say more about designs that involve TASK pre-emption in Section 1.7.   

1.6. Working with TTC SCHEDULERs 

Many (but by no means all) TT designs are implemented using co-operative 

TASKs and a ‘TTC’ SCHEDULER. 
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Figure 6: A schematic representation of a key components in a simple TTC SCHEDULER. 

Figure 6 shows a schematic representation of a key components in such a 

SCHEDULER.   

The SysTick_Handler() function is responsible for keeping track of elapsed 

time: in this example, this function is linked to a timer that generates interrupts 

every millisecond. 

Within the function PROCESSOR_Init() there will be function calls to 

initialise the SCHEDULER, initialise the TASKs and then add the TASKs to the 

schedule. 

In function main(), the process of releasing the TASKs is carried out in the 

function SCH_Dispatch_Tasks().   

The operation of a typical SCH_Dispatch_Tasks() function is illustrated 

schematically in Figure 7.  In this figure, the Dispatcher begins by 

determining whether there is a TASK that is currently due to run.  If the answer 

to this question is ‘yes’, the Dispatcher runs the TASK.  The Dispatcher repeats 

this process until there are no TASKs remaining that are due to run.  The 

Dispatcher then moves the PROCESSOR into a power-saving mode.  The 

PROCESSOR will remain in this mode until awakened by the next timer 

interrupt: at this point the timer ISR – SysTick_Handler() – will be called 

again, followed by the next call to the Dispatcher. 

It should be noted that there is a deliberate split between the process of timer 

updates and the process of TASK dispatching.  This split means that it is 

possible for the SCHEDULER to execute TASKs that are longer than one TICK 

INTERVAL without missing TICKs.  This gives greater flexibility in the system 

design, by allowing use of a short TICK INTERVAL (which can make the system 

more responsive) and longer TASKs (which can simplify the design process).  

This split may also help to make the system a little more robust in the event 

of run-time faults. 

  

uint32_t main(void)
{
PROCESSOR_Init();

SCH_Start();

while(1) 
{
SCH_Dispatch_Tasks();
}

return 1;
}

void SysTick_Handler(void)
{
Tick_count++;
}

1 ms timer



 – Page 10 –  

 

 

Figure 7: The operation of a Dispatcher. 

Flexibility in the design process and the ability to recover from transient faults 

are two reasons why ‘dynamic’ TT designs (with a separate timer ISR and 

TASK dispatch functions) are generally preferred over simpler designs in 

which TASKs are dispatched from the timer ISR.   

1.7. Supporting TASK pre-emption  

The designs discussed in Section 1.4 and Section 1.5 involve co-operative 

TASKs: this means that each TASK ‘runs to completion’ after it has been 

released.  In many TT designs, higher-priority TASKs can interrupt (pre-empt) 

lower-priority TASKs. 

For example, Figure 8 shows a set of three TASKs: Task A (low-priority), Task 

B (low-priority), and Task P (high-priority).  In this example, the low-priority 

TASKs may be pre-empted periodically by the high-priority TASK.  More 

generally, this kind of ‘time triggered hybrid’ (TTH) design may involve 

multiple co-operative TASKs (all with an equal low priority) and one or more 

pre-empting TASKs (all with an equal high priority).   

We can also create ‘time-triggered pre-emptive’ (TTP) SCHEDULERs: these 

support multiple levels of TASK priority. 

We can – of course – record the TICK LIST for TTH and TTP designs.  For 

example, the TASK sequence for Figure 8 could be listed as follows: Task P, 

Task A, Task P, Task B, Task P, Task A, Task P, Task B. 

We will focus in this book on TTC designs, but we will say more about TASK 

pre-emption in Appendix 9 and Appendix 10. 

Start Dispatcher

Run task 

Determine which 
task is due to run 
next in this tick 

(if any)

Is there a 
task due to 

run?

Go to sleep

End Dispatcher

No

Yes



 – Page 11 –  

 

Figure 8: Executing TASKs using a TTH SCHEDULER.  See text for details. 

1.8. Supporting multiple PROCESSORs and / or multiple cores 

Many designs involve the use of more than one PROCESSOR.  For example, a 

modern passenger car might contain 50 or more PROCESSORs, controlling 

brakes, door windows and mirrors, steering, air bags, and so forth.  Similarly, 

an industrial fire detection system might typically have 200 or more 

PROCESSORs, associated – for example – with a range of different sensors and 

actuators.   

When developing such ‘distributed’ designs, we need to consider issues such 

as the synchronisation of the activities on the different PROCESSORs and the 

transfer of data between PROCESSORs.  We also need to consider how we are 

going to detect (and respond to) faults on the links between PROCESSORs and 

on the PROCESSORs themselves.  We consider these issues in Chapter 9. 

Not all multi-PROCESSOR designs are distributed in nature.  In fact, many of 

the systems that we will consider in this book will employ at least two 

PROCESSORs that are often located on the same PCB.  Such designs are 

intended to facilitate cross-checking between the PROCESSORs, with the goal 

of meeting safety requirements (See Figure 9).   

In addition to working with multiple PROCESSORs, we may also have more than 

one core inside each PROCESSOR.  We say a little more about this topic in 

Chapter 3. 

 

Figure 9: An example of a DuplicaTTor design.  We discuss such designs in Appendix 3.   
Car image copyright © Nerthuz; licensed from Dreamstime.com.  
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1.9. Changing MODE 

In all of the systems considered in this book, each PROCESSOR will support at 

least one MODE, called something like ‘NORMAL mode’.  However many 

PROCESSORs support additional MODEs.  For example, Figure 10 shows a 

schematic representation of a software architecture for an aircraft system with 

MODEs corresponding to the different flight stages (preparing for take off, 

climbing to cruising height, etc). 

In this book, we consider that the MODE is changed if the TASK set is changed.  

It should therefore be clear that we are likely to have a different TICK LIST for 

each MODE.   

There are two particular features of these MODE changes that should be noted: 

 whatever the MODE, the TASKs are always released according to a 

schedule that can be validated and verified when the system is designed; 

 the timing of the transition between MODEs need not be known in 

advance, a fact that adds significantly to the flexibility of TT systems. 

What this means in practice is that – in Figure 10 – the plane can switch 

between MODEs at times that are required by the flying conditions: the timing 

of such MODE transitions may vary based, for example, on the prevailing 

weather and / or on the density of the air traffic during the flight.  Regardless 

of the timing of the MODE changes, the TASK schedule in each MODE will have 

been subject to rigorous test and verification (T&V) processes at design time.   

This combination of flexible behaviour combined with the ability to perform 

rigorous T&V activities is a very effective way of building reliable systems. 

We say more about MODEs in Chapter 8. 

 

 

Figure 10: An example of a system with multiple operating MODEs.  
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1.10. The need for run-time monitoring 

A three-stage development process is explored in detail during the course of 

this book: 

 the first stage involves modelling the system (using one or more TICK 

LISTs), as outlined in Section 1.5; 

 the second stage involves building the system (for example, using a 

simple TTC SCHEDULER, as outlined in Section 1.6); 

 third stage involves adding support for run-time monitoring. 

The last stage in the development process – run-time monitoring – is essential 

because we need to ensure that the computer system functions correctly ‘in 

the field’. 

Some of the threats that we may need to consider are as follows: 

 A HARDWARE FAILURE2 that may result (for example) from 

electromagnetic interference, or from physical damage;   

 A SOFTWARE BUG that may remain in the product even after test and 

verification processes are complete; 

 A DELIBERATE SOFTWARE CHANGE may be introduced into the system, by 

means of ‘computer viruses’ and similar security-related attacks. 

As an example of a potential fault, assume that ‘Pin 1-23’ on our 

microcontroller is intended to be used exclusively by ‘Task 45’ to activate the 

steering-column lock in a passenger vehicle.  This lock is intended to be 

engaged (to secure the vehicle against theft) only after the driver has parked 

and left the vehicle.  A (potentially very serious) resource-related fault would 

occur if Pin 1-23 was to be activated by another TASK in the system while the 

vehicle was moving at high speed. 

We will explore run-time monitoring solutions in detail in Part Four. 

1.11. Bending the rules 

Throughout most of this book, we focus on (pure) TT designs.  Under normal 

operation, these designs employ a periodic interrupt to drive a SCHEDULER on 

each PROCESSOR: where additional interrupt sources are employed, these are 

synchronised to the TICK. 

In Chapter 27 we consider ‘Quasi TT’ designs.  These employ a small number 

of additional (asynchronous) interrupts.  Used with care, these may simplify 

the design without having a significant (adverse) impact on our ability to 

model or monitor the system. 

                                                      
2  See ‘Definitions’ in Appendix 1. 
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1.12. TT Wrappers 

In addition to considering Quasi TT designs, we will also consider ‘TT 

Wrappers’. 

TT Wrappers can be used to improve confidence in the safety of embedded 

systems that include components that may have an ET architecture, may be 

highly adaptive in nature (for example, because they include artificial 

intelligence components, such as a neural network), and / or may not have 

been originally developed for use in safety-related systems. 

We say more about TT Wrappers in Chapter 20. 

1.13. Case studies 

This book is intended to present practical advice for developers of reliable 

embedded systems.  In order to ‘put theory into practice’, the book includes a 

suite of representative case studies.   

These studies explore the development of the following devices: 

 An industrial monitoring system (IEC 61508, SIL 2) 

 A domestic washing machine (IEC 60730, Class B) 

 A hospital radiotherapy machine (IEC 60601-2-1; IEC 62304, Class C) 

 A steering-column lock for a passenger car (ISO 26262, ASIL D) 

 An aircraft jet engine (DO-178C, Level A) 

1.14. Conclusions 

In this chapter, we’ve provided an overview of the material that is covered in 

detail in the remainder of this book. 

In Chapter 2, we will introduce a first simple TT SCHEDULER. 
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CHAPTER 2: A simple TTC SCHEDULER 

In this chapter, we explore the design and implementation of a TTC 

SCHEDULER for use with sets of periodic, co-operative TASKs.   

2.1. Introduction 

In this chapter, we will present a simple TT ‘co-operative’ SCHEDULER.   

Our discussions in this chapter will centre on a ‘TT Reference Design’ 

(TTRD): TTRD2-02a.  As this design – an implementation of a ‘TT02’ 

PLATFORM (see Appendix 2) – will form the foundation for all of the 

SCHEDULERs presented throughout the remainder of this book, we will explore 

the operation of this TTRD in detail. 

2.2. Hardware target 

As noted in the Preface, the TTRDs that are discussed in this book can be 

applied with a very wide range of PROCESSORs: in this chapter, the introductory 

example that we present targets an MCU with an ARM Cortex-M0 core.  

More specifically, we will work with an STM32F091 MCU running on a 

NUCLEO-F091RC board (Figure 11).   

Further information about this MCU (and all of the targets discussed in this 

book) can be found in Appendix 4.   

 

Figure 11: The NUCLEO-F091RC board that is used as the hardware target for the TTRD  
discussed in this chapter.  Photo by MJP. 
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Figure 12: An overview of the structure of the TTRD2-02a SCHEDULER.   

2.3. An introduction to TTRD2-02a 

TTRD2-02a implements a simple ‘Heartbeat’ example in which the 

SCHEDULER is used to flash an LED (‘D2’ on the Nucleo board) with a 50% 

duty cycle and a flash rate of 0.5 Hz: that is, the LED will be ‘on’ for 1 second, 

then ‘off’ for one second, then ‘on’ for one second ...  The example also 

incorporates a switch interface (linked to ‘B1’ on the board): if the switch is 

pressed, the LED will stop flashing.  As with most of the designs in this book, 

TTRD2-02a also includes a TASK to ‘feed’ a watchdog timer (WDT). 

Figure 12 provides an overview of the structure and use of the SCHEDULER in 

this example.  Before we consider the internal SCHEDULER operation, we will 

consider how the SCHEDULER is used, starting with the PROCESSOR_Init() 

function (Code Fragment 1).   

void PROCESSOR_Init(void) 
   { 
   PROCESSOR_Identify_Reqd_MoSt(); 
   PROCESSOR_Configure_Reqd_MoSt(); 
   } 

Code Fragment 1: The PROCESSOR_Init() function from TTRD2-02a [STMF091]. 

As we can see in Figure 12, PROCESSOR_Init() is called at the start of 

main().  This simple ‘wrapper’ function is responsible for identifying and 

configuring the required MODE or STATE.  We will use the same architecture 

in the great majority of the examples in this book. 

In TTRD2-02a, we support only one MODE (NORMAL) and one STATE 

(FAIL_SAFE).   

Any reset that is caused by the WDT causes the system to enter the 

FAIL_SAFE STATE (see Section 2.11), while a power-on reset (and any other 

reset events in this example) cause the system to enter NORMAL MODE (see 

Code Fragment 2).  

uint32_t main(void)
{
PROCESSOR_Init();

SCH_Start();

while(1) 
{
SCH_Dispatch_Tasks();
}

return 1;
}

void SysTick_Handler(void)
{
// Increment tick count and check against limit
if (++Tick_count_g > SCH_TICK_COUNT_LIMIT)

{
// One or more tasks has taken too long to complete
PROCESSOR_Perform_Safe_Shutdown();
}

}

1 ms timer
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void PROCESSOR_Identify_Reqd_MoSt(void) 
   { 
   // Check cause of reset 
   if (RCC_GetFlagStatus(RCC_FLAG_IWDGRST) == SET) 
      { 
      // Reset was caused by WDT => State ‘Fail Safe’ 
      Processor_MoSt_g = FAIL_SAFE; 
      } 
   else 
      { 
      // Here we treat all other forms of reset in the same way 
      // => Mode ‘Normal’ 
      Processor_MoSt_g = NORMAL; 
      } 
       
   // Clear cause-of-reset flags 
   RCC_ClearFlag();       
   } 

Code Fragment 2: The PROCESSOR_Identify_Reqd_MoSt() function from TTRD2-02a [STMF091]. 

In FAIL_SAFE STATE, the system simply ‘halts’ (Code Fragment 3, Code 

Fragment 4). 

 
void PROCESSOR_Perform_Safe_Shutdown(void) 
   { 
   uint32_t Delay1, Delay2, Heartbeat_state; 
 
   // Here we simply "fail safe" with rudimentary fault reporting. 
   // OTHER BEHAVIOUR IS LIKELY TO BE REQUIRED IN YOUR DESIGN 
 
   // ************************************* 
   // NOTE: This function should NOT return 
   // ************************************* 
 
   // Set up Heartbeat LED pin 
   HEARTBEAT_SW_Init(); 
 
   while(1) 
      { 
      // Flicker Heartbeat LED to indicate fault 
      for (Delay1 = 0; Delay1 < 1000000; Delay1++)  
         { 
         Delay2 *= 3; 
         } 
 
      // Change the LED from OFF to ON (or vice versa) 
      if (Heartbeat_state == 1) 
         { 
         Heartbeat_state = 0; 
         GPIO_ResetBits(HEARTBEAT_LED_PORT, HEARTBEAT_LED_PIN); 
         } 
      else 
         { 
         Heartbeat_state = 1; 
         GPIO_SetBits(HEARTBEAT_LED_PORT, HEARTBEAT_LED_PIN); 
         } 
      } 
   } 

Code Fragment 3: The PROCESSOR_Perform_Safe_Shutdown() function  
from TTRD2-02a [STMF091]. 
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There really isn’t very much more that we can do in this STATE in TTRD2-

02a, but – in a real system design – this is where we should end up if a serious 

problem has been detected by the PROCESSOR (and no other way of handling 

this problem has been identified).  Deciding what to do in these circumstances 

requires careful consideration during the system development process. 

 
void PROCESSOR_Configure_Reqd_MoSt(void) 
   { 
   switch (Processor_MoSt_g) 
      { 
      // Default to "Fail Safe" state  
      default:  
      case FAIL_SAFE_S: 
         { 
         // Reset caused by iWDT 
         // Trigger "fail safe" behaviour 
         PROCESSOR_Perform_Safe_Shutdown(); 
 
         break; 
         } 
 
      // NORMAL mode 
      case NORMAL_M: 
         { 
         // Set up the scheduler for 1 ms Ticks (Tick Interval in *ms*) 
         SCH_Init_Milliseconds(1); 
 
         // Set up WDT  
         // Timeout is parameter * 100 µs: 25 => ~2.5 ms 
         // NOTE: WDT driven by RC oscillator - timing varies with temperature  
         WATCHDOG_Init(25); 
 
         // Prepare for switch-reading task 
         SWITCH_BUTTON1_Init(); 
 
         // Prepare for heartbeat task 
         HEARTBEAT_SW_Init(); 
 
         // Add tasks to schedule. 
         // Parameters are: 
         // A. Task name 
         // B. Initial delay / offset (in Ticks) 
         // C. Task period (in Ticks): Must be > 0 
         //           A                      B  C 
         SCH_Add_Task(WATCHDOG_Update,       0, 1);    // Feed watchdog 
         SCH_Add_Task(SWITCH_BUTTON1_Update, 0, 10);   // Switch interface  
         SCH_Add_Task(HEARTBEAT_SW_Update,   0, 1000); // Heartbeat LED 
 
         // Feed the watchdog 
         WATCHDOG_Update(); 
 
         break; 
         } 
      } 
   } 

Code Fragment 4: The PROCESSOR_Configure_Reqd_MoSt() function  
from TTRD2-02a [STMF091].  
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When the system reset is not caused by the WDT then – in this example – we 

enter NORMAL MODE (Code Fragment 4). 

In this MODE, we need to do the following to initialise the system: 

 set up the SCHEDULER; 

 call the initialisation functions for the TASKs; and, 

 add the TASKs to the schedule. 

In our example, we first set up the SCHEDULER with 1 ms TICKs: 

SCH_Init(1); 
 

We say more about the SCH_Init() function in Section 2.6.   

Assuming that initialisation of the SCHEDULER was successful, we then set up 

the WDT: we’ll provide details of this process in Section 2.11. 

We then prepare for the switch-interface TASK and the ‘Heartbeat’ TASK, by 

means of the SWITCH_BUTTON1_Init() and HEARTBEAT_Init() 

functions.  Further information is provided about these TASKs in Section 2.12 

and Section 2.13 respectively. 

Having called their ‘init’ functions, we then add all three TASKs to the 

schedule by means of the SCH_Add_Task() function: 

SCH_Add_Task(WATCHDOG_Update, 0, 1); 
SCH_Add_Task(SWITCH_BUTTON1_Update, 0, 10); 
SCH_Add_Task(HEARTBEAT_SW_Update, 0, 1000); 
 

We say more about SCH_Add_Task() in Section 2.8. 

2.4. The SCHEDULER components 

Having summarised the startup process for TTRD2-02a, we will now consider 

the implementation and operation of the SCHEDULER in more detail. 

The SCHEDULER is made up of the following key components: 

 a SCHEDULER data structure; 

 an initialisation function; 

 a function for adding TASKs to the schedule; 

 an interrupt service routine (ISR), used to keep track of elapsed time; 

 a Dispatcher (function) that releases TASKs when they are due to run. 

We consider each of the required components in the sections that follow.    
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SCH_MAX_TASKS 

You will find SCH_MAX_TASKS in the ‘SCHEDULER Header’ file in the majority of 
designs in this book.  This constant must be set to a value that is at least as large as 
the number of TASKs that are added to the schedule in any of the MODEs. 

This memory-allocation process is not dynamic and must be checked for each 
project. 

Please note that this process is deliberately static in nature, in line with the 
recommendations of standards such as IEC 61508-3 (Clause C.2.6.3), ISO 26262-6 
(Clause 8.4.4) and MISRA C (Dir. 4.12). 

Box 3 

2.5. The SCHEDULER data structure and TASK array 

At the heart of TTRD2-02a is a user-defined data type (sTask) that collects 

together the information required about each TASK.   

Code Fragment 5 shows the sTask_t implementation used in TTRD2-02a. The 

members of sTask_t are documented in Table 2. 

The TASK set is then defined in the main SCHEDULER file as follows: 
 
sTask_t SCH_tasks_g[SCH_MAX_TASKS]; 
 
 
// User-defined type to store required data for each task 
typedef struct  
   { 
   // Pointer to the task (must be a 'void (void)' function) 
   void (*pTask) (void);   
 
   // Delay (Ticks) until the task will (next) be run 
   uint32_t Delay;        
 
   // Interval (Ticks) between subsequent runs. 
   uint32_t Period; 
   } sTask_t; 

Code Fragment 5: The sTask_t data type used in the SCHEDULERs presented in this chapter.   
Please refer to Table 2 for further information.  [STMF091]. 

 

Table 2: The members of the sTask_t data structure (as used in TTRD2-02a). 

Member Description 

void (*pTask)(void) A pointer to the TASK that is to be scheduled.   
The TASK must be implemented as a ‘void void’ function.  
See Section 2.11 for a first simple example. 

uint32_t Delay The time (in TICKs) before the TASK will next execute. 

uint32_t Period The TASK period (in TICKs).   
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2.6. The ‘Init’ function 

The SCHEDULER initialisation function is responsible for: 

 initialising the TASK array; and, 

 configuring the SCHEDULER TICK SOURCE. 

The full function listing is given in Code Fragment 6. 

The initialisation process begins by setting the pTask member of each TASK 

in the SCHEDULER array to a ‘null pointer’ value: 

SCH_tasks_g[Task_id].pTask = SCH_NULL_PTR; 
 

The value represents an address at which no TASK can be stored.  This address 

is usually ‘0’ (and that is the case here): a constant value – SCH_NULL_PTR 

– is used to make the purpose of the code more explicit (and to simplify the 

process of porting the code in the future should this ever be required). 

 
void SCH_Init_Milliseconds(const uint32_t TICKms) 
   { 
   for (uint32_t Task_id = 0; Task_id < SCH_MAX_TASKS; Task_id++) 
      { 
      // Set pTask to ‘null pointer’ 
      SCH_tasks_g[Task_id].pTask = SCH_NULL_PTR; 
      } 
 
   // Using CMSIS 
       
   // SystemCoreClock gives the system operating frequency (in Hz) 
   if (SystemCoreClock != REQUIRED_PROCESSOR_CORE_CLOCK) 
      { 
      // We treat this as a Fatal Platform Failure 
      PROCESSOR_Perform_Safe_Shutdown(); 
      } 
 
   // Now to set up SysTick timer for Ticks at interval TICKms 
   if (SysTick_Config(TICKms * SystemCoreClock / 1000)) 
      { 
      // Cannot configure SysTick as required 
      // We treat this as a Fatal Platform Failure 
      PROCESSOR_Perform_Safe_Shutdown(); 
      } 
 
   // Timer is started by SysTick_Config(): 
   // we need to disable SysTick timer and SysTick interrupt until 
   // all tasks have been added to the schedule. 
   SysTick->CTRL &= 0xFFFFFFFC; 
   } 

Code Fragment 6: The SCH_Init_Milliseconds() function from TTRD2-02a [STMF091]. 
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Selecting an appropriate clock source 

The version of TTRD2-02a that is presented in this chapter employs an RC oscillator 
as the main clock source.  Such an oscillator will typically have a frequency 
variation of 2% or more over the operating temperature of the device.   

For an introductory example, this is not an inappropriate clock source.  However, 
because of the frequency variation, an RC oscillator may not be suitable as the 
main oscillator for systems with ‘hard’ real-time characteristics, including designs 
that need to support communication protocols such as USB. 

Rather than employing an RC oscillator, most practical designs are driven by a 
crystal oscillator with a frequency variation typically in the region of ‘100 ppm’ (or 
better).  This means ‘100 parts per million’, or a variation of around 0.01% over the 
operating temperature of the device.  By way of comparison, there are 86,400 
seconds in a day: a system based on a basic (100 ppm) crystal oscillator might lose 
8.6 seconds in a day; a system based on a 2% RC oscillator might lose 1,728 
seconds (= 28 minutes) in a day. 

Design choices are rarely completely straightforward.  In this case, while crystal 
oscillators are more stable than RC oscillators, they are also more vulnerable to 
physical damage (for example, as a result of vibration).  Many safety-related 
designs will therefore employ a crystal oscillator as the main clock source, and will 
automatically switch to an RC oscillator (and perhaps enter a LIMP-HOME PROCESSOR 

MODE) if the main clock source fails.  We say more about this in Chapter 13. 

Box 4 

The next step in the SCHEDULER initialisation process involves setting up the 

timer TICKs.  In TTRD2-02a, this code is based on the ARM CMSIS3.  As part 

of this standard, ARM provides a template file system_device.c that must be 

adapted by the manufacturer of the corresponding microcontroller to match 

their device.   

At a minimum, system_device.c must provide: 

 a device-specific system configuration function, SystemInit(); and, 

 a global variable that represents the system operating frequency, 

SystemCoreClock. 

The SystemInit() function performs basic device configuration, including 

(typically) initialisation of the oscillator unit (such as a PLL).  The 

SystemCoreClock value is then set to match the results of this configuration 

process. 

If you look closely at the Nucleo board that we are using in the introductory 

SCHEDULER example that is described in this chapter (Figure 11) you will see 

that the ‘X3’ crystal is missing.  X3 is the external crystal oscillator and is – 

by default – omitted from this board (presumably on grounds of cost).   

                                                      
3  Cortex® Microcontroller Software Interface Standard. 

http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#ga93f514700ccf00d08dbdcff7f1224eb2
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6
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Rather than requiring that readers of this book add a crystal oscillator to their 

board in order to try out TTRD2-02a, the code is has been designed to operate 

with the High-Speed Internal (HSI) oscillator that is incorporated in the MCU 

(see Box 4).  Using this RC oscillator and the PLL will allow us to reach a 

48 MHz operating frequency. 

We record this expected system operating frequency in main.h by means of 

the constant REQUIRED_PROCESSOR_CORE_CLOCK (Code Fragment 7). 

// Required system operating frequency (in Hz) 
// Will be checked in the scheduler initialisation file 
#define REQUIRED_PROCESSOR_CORE_CLOCK (48000000) 

Code Fragment 7: Part of the SCH_Init_Milliseconds() function from TTRD2-02a [STMF091]. 

We then check that the system has been configured as expected, as shown in 

Code Fragment 8. 

// SystemCoreClock gives the system operating frequency (in Hz) 
if (SystemCoreClock != REQUIRED_PROCESSOR_CORE_CLOCK) 
   { 
   // We treat this as a Fatal Platform Failure 
   PROCESSOR_Perform_Safe_Shutdown(); 
   } 

Code Fragment 8: Part of the SCH_Init_Milliseconds() function from TTRD2-02a [STMF091]. 

As suggested by this code example, we attempt to force a safe shutdown if – 

for whatever reason – the system operating frequency is not as expected.  

There is no ‘magic’ underlying these checks!  As mentioned earlier in this 

section, there is – in the background – a SystemInit() function that is called 

by the system startup code, before main() is called.  The SystemInit() function 

is – in this case – responsible for configuring the STM32F091 HSI and PLL 

to give us the required operating frequency. 

The SystemInit() function can be found in the file system_stm32f0xx.c. 

The setting for this file can – if required – be adjusted using the STM32F0xx 

Clock Configuration tool (Figure 13). 

CMSIS also provides us with a SysTick timer to drive the SCHEDULER, and a 

means of configuring this timer to give the required TICK rate (Code Fragment 

9).  Again, we attempt to force a system shutdown if we cannot achieve the 

expected rate. 

Please note that SysTick_Config() starts the timer.  We wish to delay the timer 

start until we have completed the SCHEDULER configuration: we must therefore 

stop the timer, as shown at the end of Code Fragment 9. 
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Figure 13: A screenshot from the STM32F0xx Clock Configuration tool. 

// Now to set up SysTick timer for Ticks at interval TICKms 
if (SysTick_Config(TICKms * SystemCoreClock / 1000)) 
   { 
   // Cannot configure SysTick as required 
   // We treat this as a Fatal Platform Failure 
   PROCESSOR_Perform_Safe_Shutdown(); 
   } 
 
   // Timer is started by SysTick_Config(): 
   // we need to disable SysTick timer and SysTick interrupt until 
   // all tasks have been added to the schedule. 
   SysTick->CTRL &= 0xFFFFFFFC; 

Code Fragment 9: Part of the SCH_Init_Milliseconds() function from TTRD2-02a [STMF091]. 

The SysTick timer is widely used and SCHEDULER code based on this 

component very easily portable between microcontroller families.  However, 

other timers can also be used (without difficulty) to generate the TICK, if 

required. 

2.7. The ‘Update’ function 

Code Fragment 10 shows the SCHEDULER ISR. 

This function ensures that the SCHEDULER can keep track of elapsed time (by 

incrementing the ‘tick count’ variable): it also uses the same variable to 

perform a monitoring function. 

 
void SysTick_Handler(void) 
   { 
   // Increment tick count and check against limit 
   if (++Tick_count_g > SCH_TICK_COUNT_LIMIT) 
      { 
      // One or more tasks has taken too long to complete 
      PROCESSOR_Perform_Safe_Shutdown(); 
      } 
   } 

Code Fragment 10: The SysTick_Handler function from TTRD2-02a [STMF091]. 
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Figure 14: In most TTC designs, we expect that all TASKs released in a given TICK will complete their 
execution by the end of the TICK. 

 

 

Figure 15: A system design in which the TASKs released in the first TICK INTERVAL have a combined 
execution time that exceeds the TICK INTERVAL.  As this does not (in this case) have any impact on 
the release of subsequent TASKs (Task C, Task D, …), this behaviour may be acceptable in many 

designs, not least where Task B has a highly-variable execution time. 

 

Figure 16: The TASK set from Figure 15, in a situation where Task B exceeds its expected WCET. 

To understand the monitoring operation that is performed in the ISR, it should 

be noted in the majority of TTC designs we expect all TASKs that are released 

in a TICK INTERVAL to complete before the next TICK (Figure 14).  In these 

circumstances, SCH_TICK_COUNT_LIMIT will be set (in the SCHEDULER 

header file) to a value of 1: 

// Usually set to 1, unless 'Long Tasks' are employed 
#define SCH_TICK_COUNT_LIMIT (1) 
 

In some TTC designs we will expect to release a set of TASKs that have a 

combined ‘worst-case execution time’ (WCET) that may exceed the TICK 

INTERVAL: see Figure 15.  In these circumstances, we can use a larger tick-

count limit.  For example, the design illustrated in Figure 15 may be 

configured as follows: 

#define SCH_TICK_COUNT_LIMIT (2) 
 

This would allow the TASK set to execute as illustrated, but would detect 

situations in which a longer Task B started to interfere with the execution of 

Task E.  For example, in Figure 16, the variable Tick_count_g would reach a 

value of 3 before Task E was released (causing the system to enter the STATE 

FAIL_SAFE in this case). 

Time

...A C E GB D F H

Total (maximum) task execution time

Tick interval

Time

...A C EB D F

Time

A B

Tick_count_g limit exceeded:
enter Fail-Safe STATE
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2.8. The ‘Add Task’ function 

As the name is intended to suggest, the ‘Add Task’ function – Code Fragment 

11 – is used to add TASKs to the schedule.   

The function parameters are (again) as detailed in Table 2. 

 
void SCH_Add_Task(void (* pTask)(), 
                  const uint32_t DELAY, 
                  const uint32_t PERIOD) 
   { 
   uint32_t Task_id = 0; 
    
   // First find a gap in the array (if there is one) 
   while ((SCH_tasks_g[Task_id].pTask != SCH_NULL_PTR)  
          && (Task_id < SCH_MAX_TASKS)) 
      { 
      Task_id++; 
      }  
    
   // Have we reached the end of the list?    
   if (Task_id == SCH_MAX_TASKS) 
      { 
      // Task array is full - we treat this as a Fatal Platform Failure 
      PROCESSOR_Perform_Safe_Shutdown(); 
      } 
       
   // Check for ‘one shot’ tasks 
   if (PERIOD == 0) 
      { 
      // We do not allow ‘one shot’ tasks (all tasks must be periodic) 
      // We treat this as a Fatal Platform Failure 
      PROCESSOR_Perform_Safe_Shutdown(); 
      } 
 
   // If we're here, there is a space in the task array 
   // and the task to be added is periodic 
   SCH_tasks_g[Task_id].pTask  = pTask; 
 
   SCH_tasks_g[Task_id].Delay  = DELAY + 1; 
   SCH_tasks_g[Task_id].Period = PERIOD; 
   } 

Code Fragment 11: The ‘Add Task’ function from TTRD2-02a [STMF091]. 

Please note that: 

 if an attempt is made to add too many TASKs to the schedule (see Box 3, 

p.20), the PROCESSOR shuts down; 

 only periodic TASKs are supported in this SCHEDULER (and throughout 

this book); this helps to ensure that the activities on each PROCESSOR can 

be readily modelled (at design time) and monitored (at run time), as we 

will demonstrate in later chapters.   
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2.9. The Dispatcher 

The release of the TASKs is carried out in the function SCH_Dispatch_Tasks(): 

Figure 12 shows this function in context, and Code Fragment 12 presents the 

source. 

 
void SCH_Dispatch_Tasks(void)  
   { 
   __disable_irq();   
   uint32_t Update_required = (Tick_count_g > 0);  // Check tick count 
   __enable_irq(); 
 
   while (Update_required) 
      { 
      // Go through the task array 
      for (uint32_t Task_id = 0; Task_id < SCH_MAX_TASKS; Task_id++) 
         { 
         // Check if there is a task at this location 
         if (SCH_tasks_g[Task_id].pTask != SCH_NULL_PTR) 
            { 
            if (--SCH_tasks_g[Task_id].Delay == 0) 
               { 
               (*SCH_tasks_g[Task_id].pTask)();  // Run the task 
 
               // All tasks are periodic: schedule task to run again 
               SCH_tasks_g[Task_id].Delay = SCH_tasks_g[Task_id].Period; 
               } 
            }          
         }  
 
      __disable_irq(); 
      Tick_count_g--;                       // Decrement the count 
      Update_required = (Tick_count_g > 0); // Check again 
      __enable_irq(); 
      } 
 
   // The scheduler enters idle mode at this point  
   __WFI();      
   } 

Code Fragment 12: The Dispatcher from TTRD2-02a [STMF091]. 

Please note that in Code Fragment 12 we have a ‘shared resource’ 

(Tick_count_g) that is accessed from both the SCHEDULER ISR and the 

Dispatcher.  Such resources need to be protected, and the disabling of 

interrupts before Tick_count_g is accessed in the Dispatcher meets this 

requirement in an appropriate manner.   

In most designs (such as that represented by Figure 14), the SCHEDULER 

operation is as follows (see Figure 17): 

 the PROCESSOR is paused in idle mode (it enters this mode at the end of 

the Dispatcher, see the final lines in Code Fragment 12); 

 the TICK ‘wakes’ the PROCESSOR and triggers the SCHEDULER ISR, which 

causes Tick_count_g variable to be incremented and checked (Code 

Fragment 10);  
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Figure 17: A schematic representation of the SCHEDULER operation. 

 assuming that the value of Tick_count_g is within the allowed range, the 

ISR ends and the Dispatcher starts again (Code Fragment 12); 

 within the dispatcher, the value of Tick_count_g is checked and, if this 

value is greater than 0, the Dispatcher goes through the TASK array in 

order, updating the ‘delay’ values for each TASK and releasing any TASKs 

that are due to run; 

 having completed the SCHEDULER update process, the PROCESSOR enters 

idle mode at the end of the Dispatcher, and the process repeats. 

It may seem that the process of checking the value of Tick_count_g at the 

start of the Dispatcher (and the setting of the Update_required flag) is 

unnecessary.  However, it is possible that the SCHEDULER has not entered idle 

mode correctly: see Figure 18.  Alternatively, the system could be wakened 

from idle mode by an event other than the SCHEDULER ISR.  Without the 

Update_required flag – or a similar mechanism – it is possible that TASK 

updates would be carried out more frequently than required in these 

circumstances.  The checks of the value of Tick_count_g are intended to 

reduce the risk of such problems. 

We also need to repeat these checks at the end of the Dispatcher in order to 

handle TASKs that are still running when the TICK is generated. 

Use of idle mode is an important way of controlling jitter (very precisely) in 

a TTC design, because it allows us to place both the hardware and software 

into a known configuration.  This means that the response time to the timer 

ISR is (in most MCU architectures) of a fixed duration.  For example, in the 

STM32F091 MCU that is the target for version of TTRD2-02a that is 

presented in this chapter, the response time to the timer ISR when in idle mode 

is precisely 20 clock cycles: we would therefore expect to see no TICK jitter. 

Dispatcher
[Tick_count_g--]

Timer ISR
[Tick_count_g++]

Wake up CPU

Place CPU in Idle mode
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Figure 18: If the system does not enter idle mode, the Dispatcher may be called more frequently 
than intended.  Checks of the value of Tick_count_g are used to detect this. 

We say more about jitter in real-time systems in Appendix 6.  We discuss 

techniques for measuring such jitter in Appendix 7. 

2.10. The ‘Start’ function 

The SCHEDULER Start function (Code Fragment 13) is called after all of the 

required TASKs have been added to the schedule.   

 
void SCH_Start(void)  
   { 
   // Enable SysTick timer 
   SysTick->CTRL |= 0x01; 
 
   // Enable SysTick interrupt 
   SysTick->CTRL |= 0x02; 
   } 

Code Fragment 13: The SCH_Start() function from TTRD2-02a.  This function should be called 
after all required Tasks have been added to the schedule [STMF091]. 

SCH_Start() starts the SCHEDULER timer, and enables the related interrupt. 

2.11. Watchdog timer support 

TTRD2-02a includes a TASK to ‘feed’ the watchdog timer that is incorporated 

in the PROCESSOR: this is an ‘internal WDT’, or ‘iWDT’.  As in the majority 

of other examples in this book, the iWDT is used in TTRD2-02a: [i] to detect 

situations in which the SCHEDULER is not operating; and [ii] to trigger a move 

into a FAIL-SAFE PROCESSOR STATE in these circumstances. 

The initialisation function and TASK that make up the TASK MODULE for the 

iWDT are shown in Code Fragment 14.  In TTRD2-02a, we set the iWDT 

timeout to around 2.5 TICKs, and we ‘feed’ the timer at the start of each TICK 

(Figure 19).   

Please note that – in a practical design – we would usually aim to use different 

clock sources for the SCHEDULER and the iWDT: this usually means that we 

use a crystal oscillator as the clock source for the SCHEDULER, and an RC 

oscillator to drive the iWDT.  As we discussed in Box 4 (p. 22) the stability 

of RC oscillators is comparatively limited: this means that it is rarely possible 

to rely on the WDT for precise timing control, and a ‘2.5 TICK’ timeout is 

usually an effective starting point. 

  

Dispatcher
[Tick_count_g--]

Timer ISR
[Tick_count_g++]
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Figure 19: Running a WDT refresh TASK (shown as Task W) at the start of each TICK INTERVAL. 

iWDTs are key components in most systems.  Unfortunately, in the author’s 

experience, they are very often misused (even in designs that are intended to 

be safety related).  We will say more about the effective use of these simple 

but important timers in Chapter 16. 

2.12. The ‘Switch’ TASK 

We view the process of feeding the iWDT as a ‘core TASK’ (that will be 

employed on virtually every system).  TTRD2-02a also incorporates two 

simple ‘user TASKs’.   

The first user TASK is designed to read the state of a switch that is connected 

to our microcontroller.  In this case, the switch used in the example is ‘B1’ 

(which is identified in Figure 11). 

B1 is connected on the Nucleo board (essentially) as illustrated in Figure 20.  

In an ideal world, pressing this button would give rise to a waveform at the 

port pin which looks something like that illustrated in Figure 21 (top).  In 

practice, all mechanical switch contacts bounce after the switch is closed or 

opened.  As a result, the actual input waveform will look more like that shown 

in Figure 21 (bottom).  Usually, switches bounce for less than 20 ms (and this 

is what we would expect from B1): however large mechanical switches 

exhibit bounce behaviour for 50 ms or more. 

Code Fragment 15 and Code Fragment 16 present the core of the switch-

interface TASK MODULE.  Code Fragment 16 includes the switch-interface 

TASK itself – SWITCH_BUTTON1_Update() – that will be called 

periodically and will report a switch press only after a ‘stable’ reading has 

been obtained from the hardware.   

 

 

 

Figure 20: A typical switch connection to a microcontroller.  Note that – in practice – the input 
may be ‘opto isolated’ (or have some equivalent protection): such an interface would not have an 

impact on the software architecture that is discussed here. 

Time
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void WATCHDOG_Init(const uint32_t WDT_COUNT) 
   { 
   // Enable write access to IWDG_PR and IWDG_RLR registers 
   IWDG->KR = 0x5555; 
 
   // Set pre-scalar to 4 (‘tick’ is ~100 µs) 
   IWDG->PR = 0x00; 
 
   // Counts down to 0 in increments of 100 µs 
   // Max reload value is 0xFFF (4095) or ~410 ms (with this prescalar) 
   IWDG->RLR = WDT_COUNT; 
 
   // Reload IWDG counter 
   IWDG->KR = 0xAAAA; 
 
   // Enable IWDG (the LSI oscillator will be enabled by hardware) 
   IWDG->KR = 0xCCCC; 
 
   // Feed watchdog 
   WATCHDOG_Update(); 
   } 
 
/*-------------------*/ 
 
void WATCHDOG_Update(void) 
   { 
   // Feed the watchdog (reload IWDG counter) 
   IWDG->KR = 0xAAAA; 
   } 

Code Fragment 14: The core of the WDT module from TTRD2-02a [STMF091]. 

 

 

 
Figure 21: The voltage signal resulting from a mechanical switch.  [Top] Idealised waveform 

resulting from a switch depressed at time t1 and released at time t2 [Bottom] Actual waveform 
showing leading edge bounce following switch depression and trailing edge bounce following 

switch release.   

  



- Page 32 - 

 
// Allows NO or NC switch to be used (or other wiring variations) 
#define SW_PRESSED (0) 
 
// SW_THRES must be > 1 for correct debounce behaviour 
#define SW_THRES (3) 
 
// The current switch state (see Init function) 
static uint32_t Switch_button1_pressed_g; 
 
/*-------------------*/ 
 
void SWITCH_BUTTON1_Init(void) 
   { 
   GPIO_InitTypeDef GPIO_InitStruct; 
   
   // Enable GPIOC clock (bit 19) 
   RCC->AHBENR |=  (1UL << 19);     
   
   // Configure the switch pin 
   GPIO_InitStruct.GPIO_Mode  = GPIO_Mode_IN; 
   GPIO_InitStruct.GPIO_Speed = GPIO_Speed_Level_1;  
   GPIO_InitStruct.GPIO_PuPd  = GPIO_PuPd_NOPULL; 
   GPIO_InitStruct.GPIO_Pin   = BUTTON1_PIN; 
 
   GPIO_Init(BUTTON1_PORT, &GPIO_InitStruct); 
   
   // Set the initial state   
   Switch_button1_pressed_g = BUTTON1_NOT_PRESSED; 
   } 

Code Fragment 15: The core of the ‘Switch’ module from TTRD2-02a, Part 1 of 2 [STMF091] 

Please note that the structure of this TASK MODULE is the same as the Heartbeat 

module: that is, we have an ‘Init’ function and an ‘Update’ function (the TASK 

itself).  This is the core structure that we will see for most TASK MODULEs in 

this book.4  In addition, most of our modules will also include ‘Get’ / ‘Set’ 

functions: in this case, we have a Get function for accessing the switch state.   

We will say a little more about Get and Set functions in Section 2.14. 

2.13. The ‘Heartbeat’ TASK 

Many PLATFORMs benefit from the inclusion of a ‘Heartbeat’ LED. 

This is usually implemented by means of a TASK that flashes an LED on and 

off, with a 50% duty cycle and a frequency of 0.5 Hz: that is, the LED is on 

for one second, off for one second, on for one second … 

Use of this simple reporting mechanism ensures that the development team, 

the maintenance team and, where appropriate, the users, can tell at a glance 

that the system has power, and that the SCHEDULER is operating normally. 

The Heartbeat module from TTRD2-02a is shown in Code Fragment 17. 

  

                                                      
4  Some modules may also require a ‘Deinit’ function (see Chapter 8) and / or an interface 

that supports testing, including fault injection (see Chapter 13). 
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void SWITCH_BUTTON1_Update(void) 
   { 
   // Duration of switch press 
   static uint32_t Duration_s = 0; 
 
   // Read the pin state 
   uint32_t Button1_input = GPIO_ReadInputDataBit(BUTTON1_PORT, BUTTON1_PIN); 
    
   if (Button1_input == SW_PRESSED) 
      { 
      Duration_s += 1; 
 
      if (Duration_s > SW_THRES) 
         { 
         Duration_s = SW_THRES; 
 
         Switch_button1_pressed_g = BUTTON1_PRESSED; 
         } 
      else 
         { 
         // Switch pressed, but not yet for long enough 
         Switch_button1_pressed_g = BUTTON1_NOT_PRESSED; 
         } 
      } 
   else 
      { 
      // Switch not pressed – reset the count 
      Duration_s = 0; 
 
      // Update status 
      Switch_button1_pressed_g = BUTTON1_NOT_PRESSED; 
      } 
   } 
 
/*-------------------*/ 
 
uint32_t SWITCH_BUTTON1_Get_State(void) 
   { 
   return Switch_button1_pressed_g; 
   } 

Code Fragment 16: The core of the ‘Switch’ module from TTRD2-02a, Part 2 of 2 [STMF091]. 

In Code Fragment 17, the Heartbeat TASK incorporates a link to the switch-

interface TASK (Section 2.12), by means of which we ensure that the LED 

stops flashing if the switch is pressed. 

2.14. Transferring data between TASKs 

In previous introductory texts (and the previous edition of this book), the 

author has used global variables as a means of transferring data between 

TASKs. 

In the present text, we have a focus on the development of reliable and 

(potentially) safety-related systems: in such environments, we would 

generally wish to make limited use of global variables.  For example, 

ISO 26262-6 (Table 8) recommends that global variables are avoided (or their 

use justified) in all safety-related designs (from ‘ASIL A’ to ‘ASIL D’). 
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void HEARTBEAT_SW_Init(void) 
   { 
   GPIO_InitTypeDef GPIO_InitStruct; 
      
   // Enable GPIOA clock (bit 17) 
   RCC->AHBENR |=  (1UL << 17);     
      
   // Configure port pin for the LED 
   GPIO_InitStruct.GPIO_Mode  = GPIO_Mode_OUT; 
   GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; 
   GPIO_InitStruct.GPIO_Speed = GPIO_Speed_Level_1;  
   GPIO_InitStruct.GPIO_PuPd  = GPIO_PuPd_NOPULL; 
   GPIO_InitStruct.GPIO_Pin   = HEARTBEAT_LED_PIN; 
    
   GPIO_Init(HEARTBEAT_LED_PORT, &GPIO_InitStruct);  
   } 
 
/*-------------------*/ 
 
void HEARTBEAT_SW_Update(void) 
   { 
   static uint32_t Heartbeat_state_s = 0; 
 
   // Check switch (Button 1) state 
   if (SWITCH_BUTTON1_Get_State() == SWITCH_NOT_PRESSED) 
      { 
      // Switch is *not* pressed: normal 'heartbeat' behaviour  
 
      // Change the LED from OFF to ON (or vice versa) 
      if (Heartbeat_state_s == 1) 
         { 
         Heartbeat_state_s = 0; 
         GPIO_ResetBits(HEARTBEAT_LED_PORT, HEARTBEAT_LED_PIN); 
         } 
      else 
         { 
         Heartbeat_state_s = 1; 
         GPIO_SetBits(HEARTBEAT_LED_PORT, HEARTBEAT_LED_PIN); 
         } 
      } 
   } 

Code Fragment 17: The core of the ‘Heartbeat’ module from TTRD2-02a [STMF091] 

In place of global variables, we employ ‘private’ variables in each TASK 

module, and provide ‘Get’ and / or ‘Set’ functions to access these data.  It is 

expected that such a Get / Set arrangement will be familiar to the majority of 

readers of this book. 

As an example, Code Fragment 17 shows use of the 

SWITCH_BUTTON1_Get_State() function to read the state of the switch: the 

full function definition can be found in Code Fragment 16. 

2.15. Conclusions 

In this chapter, we’ve introduced a simple but flexible SCHEDULER for use with 

sets of periodic co-operative TASKs.  This design will form the foundation for 

all of the SCHEDULERs presented throughout the remainder of this book. 

In Part Two, we start to look at the design of effective TASKs for use with TT 

systems.  



- Page 35 - 

2.16. Further reading 

Mwelwa, C. and Pont, M.J. (2003) ‘Two new patterns to support the development of 

reliable embedded systems’ Paper presented at the Second Nordic Conference 

on Pattern Languages of Programs, (‘VikingPLoP 2003’), Bergen, Norway, 

September 2003.   

Pont, M.J. (2001) ‘Patterns for Time-Triggered Embedded Systems: Building 

Reliable Applications with the 8051 Family of Microcontrollers’, Addison-

Wesley / ACM Press.  ISBN: 0-201-331381. 

Pont, M.J. and Ong, H.L.R. (2003) ‘Using watchdog timers to improve the 

reliability of TTCS embedded systems’, in Hruby, P. and Soressen, K. E. 

[Eds.] Proceedings of the First Nordic Conference on Pattern Languages of 

Programs, September, 2002 (‘VikingPloP 2002’), pp.159-200.  Published by 

Microsoft Business Solutions.  ISBN: 87-7849-769-8.   

 
 

 


