

The Engineering of
Reliable Embedded Systems

LPC1769 edition

Michael J. Pont

This document includes extracts from the book:

Pont, M.J. (2014) “The Engineering of Reliable Embedded
Systems: LPC1769 edition”, Published by SafeTTy Systems
Ltd. ISBN: 978-0-9930355-0-0.

Last updated: 9 July 2016

This document may be freely distributed
(provided that the file is not altered in any way)

This is an extract from the first edition of ‘ERES’ (‘ERES1’).

We have now released the complete ‘ERES1’ book in PDF form.

You can download the book here (free of charge):

http://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems

The second edition of ERES (‘ERES2’) is now also available:

http://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems-second-edition

http://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems
http://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems-second-edition

Published by SafeTTy Systems Ltd

www.SafeTTy.net

First published 2014

First printing December 2014

Second printing (with corrections) January 2015

Copyright © 2014-2016 by SafeTTy Systems Ltd

The right of Michael J. Pont to be identified as Author of this work has been

asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

ISBN 978-0-9930355-0-0

All rights reserved; no part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise without the prior written

permission of the publishers. This book may not be lent, resold, hired out or

otherwise disposed of in any form of binding or cover other than that in which it is

published, without the prior consent of the publishers.

Trademarks

MoniTTor® is a registered trademark of SafeTTy Systems Ltd.

PredicTTor® is a registered trademark of SafeTTy Systems Ltd.

WarranTTor® is a registered trademark of SafeTTy Systems Ltd.

ReliabiliTTy® is a registered trademark of SafeTTy Systems Ltd.

SafeTTy Systems® is a registered trademark of SafeTTy Systems Ltd.

ARM® is a registered trademark of ARM Limited.

NXP® is a registered trademark of NXP Semiconductors.

All other trademarks acknowledged.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

http://www.safetty.net/

This book is dedicated to Benjamin, Timothy, Rowena, Jonathan and Eliza.

This is an extract from the first edition of ‘ERES’.

You’ll find extracts from the second edition of this book here:

http://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems-second-edition

http://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems-second-edition

v

Contents

Definitions ... xiii

Acronyms and abbreviations ... xv

Reference designs .. xvii

International standards and guidelines .. xix

Preface ... xxi
a. What is a “reliable embedded system”? .. xxi
b. Who needs reliable embedded systems? .. xxi
c. Why work with “time-triggered” systems? ... xxii
d. How does this book relate to international safety standards? xxii
e. What programming language is used? .. xxiii
f. Is the source code “freeware”? .. xxiii
g. How does this book relate to other books in the “ERES” series? xxiii
h. What processor hardware is used in this book? .. xxiv
i. How does this book relate to “PTTES”? .. xxiv
j. Is there anyone that you’d like to thank? .. xxv

PART ONE: INTRODUCTION ... 1

CHAPTER 1: Introduction ... 3
1.1. Introduction .. 3
1.2. Single-program, real-time embedded systems ... 4
1.3. TT vs. ET architectures .. 6
1.4. Modelling system timing characteristics .. 7
1.5. Working with “TTC” schedulers .. 9
1.6. Supporting task pre-emption .. 11
1.7. Different system modes.. 11
1.8. A “Model-Build-Monitor” methodology ... 12
1.9. How can we avoid Uncontrolled System Failures? ... 14
1.10. Conclusions ... 16

CHAPTER 2: Creating a simple TTC scheduler .. 17
2.1. Introduction .. 17
2.2. A first TTC scheduler (TTRD02a) ... 21
2.3. The scheduler data structure and task array .. 21
2.4. The ‘Init’ function.. 21
2.5. The ‘Update’ function ... 23
2.6. The ‘Add Task’ function .. 24
2.7. The ‘Dispatcher’ .. 24
2.8. The ‘Start’ function ... 26
2.9. The ‘sleep’ function .. 26
2.10. Where is the “Delete Task” function? .. 27
2.11. Watchdog timer support .. 28
2.12. Choice of watchdog timer settings ... 29

vi

2.13. The ‘Heartbeat’ task (with fault reporting) ... 30
2.14. Detecting system overloads (TTRD02b) .. 31
2.15. Example: Injected (transitory) task overrun (TTRD02b) 32
2.16. Task overruns may not always be “A Bad Thing” ... 33
2.17. Porting the scheduler (TTRD02c) .. 33
2.18. Conclusions ... 34
2.19. Code listings (TTRD02a) .. 35
2.20. Code listings (TTRD02b) .. 60
2.21. Code listings (TTRD02c) .. 61

CHAPTER 3: Initial case study ... 63
3.1. Introduction .. 63
3.2. The focus of this case study .. 63
3.3. The purpose of this case study ... 63
3.4. A summary of the required system operation .. 65
3.5. The system architecture ... 65
3.6. The system states ... 66
3.7. Implementation platform for the prototype .. 66
3.8. The “system” task ... 68
3.9. The “selector dial” task ... 68
3.10. The “start switch” task .. 69
3.11. The “door lock” task ... 69
3.12. The “water valve” task .. 69
3.13. The “detergent hatch” task .. 69
3.14. The “water level” task... 69
3.15. The “water heater” task ... 69
3.16. The “water temperature” task.. 69
3.17. The “drum motor” task ... 69
3.18. The “water pump” task ... 69
3.19. The Heartbeat task ... 69
3.20. Communication between tasks .. 70
3.21. Where do we go from here? ... 71
3.22. Conclusions ... 72
3.23. Code listings (TTRD03a) .. 73

PART TWO: CREATING RELIABLE TTC DESIGNS .. 91

CHAPTER 4: Modelling system timing characteristics................................... 93
4.1. Introduction .. 93
4.2. Basic Tick Lists ... 93
4.3. Determining the required tick interval ... 94
4.4. Working with “Short Tasks” .. 94
4.5. The hyperperiod ... 95
4.6. Performing GCD and LCM calculations ... 95
4.7. Synchronous and asynchronous task sets .. 95
4.8. The importance of task offsets ... 96
4.9. The Task Sequence Initialisation Period (TSIP) ... 97
4.10. Modelling CPU loading.. 97

vii

4.11. Worked Example A: Determining the maximum CPU load 98
4.12. Worked Example A: Solution .. 99
4.13. Modelling task jitter .. 100
4.14. Worked Example B: Modelling task release jitter ... 104
4.15. Worked Example B: Solution .. 104
4.16. Modelling response times .. 105
4.17. Worked Example C: An “emergency stop” interface 107
4.18. Worked Example C: Solution .. 110
4.19. Generating Tick Lists ... 111
4.20. Conclusions ... 111

CHAPTER 5: Obtaining data for system models ... 113
5.1. Introduction .. 113
5.2. The importance of WCET / BCET information... 113
5.3. Challenges with WCET / BCET measurements .. 114
5.4. Instrumenting a TTC scheduler: WCET-BCET (TTRD05a) 116
5.5. Example: An injected task overrun (TTRD05b) ... 117
5.6. Obtaining jitter measurements: Tick jitter (TTRD05c) 117
5.7. Example: The impact of idle mode on a TTC scheduler 117
5.8. Obtaining jitter measurements: Task jitter (TTRD05d) 118
5.9. Example: The impact of task order on a TTC scheduler 119
5.10. Traditional ways of obtaining task timing information 121
5.11. Generating a Tick List on an embedded platform (TTRD05e) 121
5.12. Creating a Tick List that meets your requirements ... 123
5.13. Conclusions ... 124

CHAPTER 6: Timing considerations when designing tasks 125
6.1. Introduction .. 125
6.2. Design goal: “Short Tasks” .. 126
6.3. The need for multi-stage tasks ... 126
6.4. Example: Measuring liquid flow rates .. 127
6.5. Example: Buffering output data .. 129
6.6. Example: DMA-supported outputs ... 131
6.7. The need for timeout mechanisms ... 131
6.8. Example: Loop timeouts ... 134
6.9. Example: Hardware timeout ... 135
6.10. Handling large / frequent data inputs .. 135
6.11. Example: Buffered input ... 135
6.12. Example: DMA input ... 136
6.13. Example: Multi-core input (“Smart” buffering) .. 136
6.14. Example: Customised hardware support .. 137
6.15. Execution-time balancing in TTC designs (task level) 137
6.16. Execution-time balancing in TTC designs (within tasks) 138
6.17. ASIDE: Execution-time balancing in TTH / TTP designs 139
6.18. Example: Execution-time balancing at an architecture level 139
6.19. Example: Manual execution-time balancing ... 140
6.20. Example: Sandwich delays for execution-time balancing 141

viii

6.21. Appropriate use of Sandwich Delays .. 142
6.22. Conclusions ... 142
6.23. Code Listings (TTRD06a) ... 143
6.24. Code Listings (TTRD06b) ... 146

CHAPTER 7: Multi-mode systems.. 147
7.1. Introduction .. 147
7.2. What does it mean to change the system mode? .. 147
7.3. Mode change or state change? .. 148
7.4. The timing of mode changes... 149
7.5. Implementing effective multi-mode designs .. 149
7.6. The architecture of a multi-mode system .. 150
7.7. Different system settings in each mode (if required) 151
7.8. Design example with multiple Normal Modes (TTRD07a) 151
7.9. Design example with fault injection (TTRD07b) .. 153
7.10. The process of “graceful degradation” ... 153
7.11. Design example supporting graceful degradation (TTRD07c)......................... 154
7.12. Mode changes in the presence of faults ... 155
7.13. Conclusions ... 155
7.14. Code listings (TTRD07a) .. 156
7.15. Code listings (TTRD07c) .. 165

CHAPTER 8: Task Contracts (Resource Barriers) ... 177
8.1. Introduction .. 177
8.2. Origins of “Contracts” in software development.. 178
8.3. What do we mean by a “Task Contract”? ... 178
8.4. Numerical example ... 179
8.5. Control example ... 179
8.6. Timing is part of the Task Contract ... 180
8.7. Implementing Task Contracts (overview) ... 181
8.8. Implementing Task Contracts (timing checks) .. 181
8.9. Implementing Task Contracts (checking peripherals) 182
8.10. Example: Feeding the WDT ... 184
8.11. One task per peripheral .. 184
8.12. What about shared data? ... 185
8.13. Implementing Task Contracts (protecting data transfers) 186
8.14. An alternative way of detecting corruption in shared data 187
8.15. How can we detect corruption of the scheduler data? 187
8.16. Making use of the MPU .. 187
8.17. Supporting Backup Tasks .. 188
8.18. What do we do if our Resource Barrier detects a fault? 188
8.19. Task Contracts and international standards ... 189
8.20. Conclusions ... 190
8.21. Code listings (TTRD08a) .. 191

CHAPTER 9: Task Contracts (Time Barriers) ... 235
9.1. Introduction .. 235
9.2. An evolving system architecture... 236

ix

9.3. System operation .. 237
9.4. Handling execution-time faults ... 238
9.5. Example: TTC scheduler with MoniTTor (TTRD09a) ... 239
9.6. Working with long tasks ... 240
9.7. External MoniTTor solutions ... 241
9.8. Alternatives to MoniTTor .. 241
9.9. Conclusions ... 241
9.10. Code listings (TTRD09a) .. 242

CHAPTER 10: Monitoring task execution sequences 247
10.1. Introduction .. 247
10.2. Implementing a predictive monitor .. 249
10.3. The importance of predictive monitoring ... 251
10.4. The resulting system architecture .. 251
10.5. Handling task-sequence faults .. 252
10.6. Example: Monitoring a 3-mode system (TTRD10a) .. 252
10.7. Creating the Task-Sequence Representation (TSR) .. 252
10.8. Side effects of the use of a PredicTTor unit .. 253
10.9. Synchronous vs. asynchronous task sets revisited ... 253
10.10. The Task Sequence Initialisation Period (TSIP) ... 254
10.11. Worked example ... 255
10.12. Solution ... 256
10.13. Example: Monitoring another 3-mode system (TTRD10b) 256
10.14. Where should we store the TSR? .. 256
10.15. Links to international standards ... 257
10.16. Conclusions ... 257
10.17. Code listings (TTRD10a) .. 258

PART THREE: CREATING RELIABLE TTH AND TTP DESIGNS 263

CHAPTER 11: Supporting task pre-emption .. 265
11.1. Introduction .. 265
11.2. Implementing a TTH scheduler ... 267
11.3. Key features of a TTH scheduler ... 268
11.4. TTH example: Emergency stop (TTRD11a) .. 269
11.5. TTH example: Medical alarm in compliance with IEC 60601 270
11.6. TTH example: Long pre-empting section (TTRD11b) 271
11.7. From TTH to TTP (TTRD11c) .. 272
11.8. Monitoring task execution times (TTRD11d) .. 272
11.9. Use of watchdog timers in TTH and TTP designs .. 274
11.10. Conclusions ... 275

CHAPTER 12: Maximising temporal determinism 277
12.1. Introduction .. 277
12.2. Jitter levels in TTH designs (TTRD12a) .. 277
12.3. Reducing jitter in TTH designs (TTRD12b) ... 278
12.4. Shared resources and priority inversion in ET systems 279
12.5. The impact of PI on ET and TT designs.. 280

x

12.6. Avoiding priority inversion in TTH / TTP systems ... 281
12.7. A general need for code balancing in TTH / TTP designs 281
12.8. Do you need to balance the code in your system? ... 283
12.9. Using code balancing to prevent priority inversion .. 283
12.10. Monitoring task execution sequences (TTRD12d) .. 284
12.11. Conclusions ... 284

PART FOUR: COMPLETING THE SYSTEM .. 285

CHAPTER 13: From Task Contracts to System Contracts 287
13.1. Introduction .. 287
13.2. What is a “System Contract”? ... 288
13.3. Generic POST operations .. 288
13.4. Example: POST operations that meet IEC 60335 requirements 290
13.5. Checking the system configuration ... 291
13.6. Example: Check the system configuration .. 292
13.7. Generic periodic checks (BISTs) .. 293
13.8. Example: BISTs in compliance with IEC 60335 .. 293
13.9. Additional periodic tests ... 294
13.10. Example: Monitoring CPU temperature (TTRD13a) 294
13.11. System modes ... 294
13.12. Tasks and backup tasks ... 294
13.13. Example: Design of a backup task for analogue outputs 297
13.14. Shutting the system down .. 297
13.15. Performing initial system tests ... 298
13.16. International standards .. 299
13.17. Conclusions ... 300

CHAPTER 14: Recommended system platforms ... 301
14.1. Introduction .. 301
14.2. Recommended system platform: TT01 ... 301
14.3. Recommended System architecture: TT02 ... 304
14.4. Selecting an MCU: General considerations... 305
14.5. Selecting an MCU: Supporting a TT scheduler .. 306
14.6. Recommended system architecture: TT03 ... 307
14.7. Selecting an MCU: WarranTTor platform ... 309
14.8. Conclusions ... 310

CHAPTER 15: Revisiting the case study ... 311
15.1. Introduction .. 311
15.2. An overview of the development process .. 311
15.3. The system requirements ... 313
15.4. Considering potential threats and hazards ... 313
15.5. Considering international safety standards .. 313
15.6. Potential system platform .. 314
15.7. Does the team have the required skills and experience? 315
15.8. Shutting the system down .. 315
15.9. Powering the system up ... 317

xi

15.10. Periodic system checks ... 317
15.11. The system modes .. 318
15.12. The system states ... 318
15.13. The task sets ... 321
15.14. Modelling the task set and adjusting the task offsets 321
15.15. Fault-detection and fault handling (overview) ... 323
15.16. Using Lightweight Resource Barriers .. 323
15.17. A MoniTTor unit .. 325
15.18. A PredicTTor unit .. 325
15.19. A simple system model and fault-injection facility 325
15.20. Fault codes and fault reporting .. 329
15.21. Revisiting the system requirements ... 329
15.22. Directory structure ... 333
15.23. Running the prototype ... 333
15.24. International standards revisited .. 334
15.25. Conclusions ... 334

PART FIVE: CONCLUSIONS ... 335

CHAPTER 16: Conclusions .. 337
16.1. The aim of this book ... 337
16.2. The LPC1769 microcontroller ... 337
16.3. From safety to security ... 338
16.4. From processor to distributed system .. 338
10.5. Conclusions ... 338

APPENDIX ... 341

APPENDIX 1: LPC1769 test platform ... 343
A1.1. Introduction .. 343
A1.2. The LPC1769 microcontroller ... 343
A1.3. LPCXpresso toolset ... 343
A1.4. LPCXpresso board ... 344
A1.5. The EA Baseboard ... 344
A1.6. Running TTRD02a ... 347
A1.7. Running TTRD05a ... 348
A1.8. Conclusions ... 349

Full list of references and related publications ... 351

Index .. 363

xiii

Definitions

An Uncontrolled System Failure means that the system has not detected a

System Fault correctly or – having detected such a fault – has not

executed a Controlled System Failure correctly, with the consequence

that significant System Damage may be caused. The system may be in

any mode other than a Fail-Silent Mode when an Uncontrolled System

Failure occurs.

A Controlled System Failure means that – having correctly detected a

System Fault – a reset is performed, after which the system enters a

Normal Mode, or a Limp-Home Mode, or a Fail-Silent Mode.

A Controlled System Failure may proceed in stages. For example, after

a System Fault is detected in a Normal Mode, the system may (after a

system reset) re-enter the same Normal Mode; if another System Fault is

detected within a pre-determined interval (e.g. 1 hour), the system may

then enter a Limp-Home Mode. Depending on the nature of the fault,

the sequence may vary: for example, the system may move immediately

from a Normal Mode to a Fail-Silent Mode if a significant fault is

detected. The system may be in any mode other than a Fail-Silent Mode

when a Controlled System Failure occurs.

A Normal Mode means a pre-determined dynamic mode in which the

system is fully operational and is meeting all of the expected system

requirements, without causing System Damage. The system may

support multiple Normal Modes.

A Limp-Home Mode means a pre-determined dynamic mode in which –

while the system is not meeting all of the expected system requirements

– a core subset of the system requirements is being met, and little or no

System Damage is being caused. The system may support multiple

Limp-Home Modes. In many cases, the system will enter a Limp-Home

Mode on a temporary basis (for example, while attempts are made to

bring a damaged road vehicle to rest in a location at the side of a

motorway), before it enters a Fail-Silent Mode.

A Fail-Silent Mode means a pre-determined static mode in which the

system has been shut down in such a way that it will cause little or no

System Damage. The system will usually support only a single Fail-

Silent Mode. In many cases, it is expected that intervention by a

qualified individual (e.g. a Service Technician) may be required to re-

start the system once it has entered a Fail-Silent Mode.

xiv

System Damage results from action by the system that is not in accordance

with the system requirements. System Damage may involve loss of life

or injury to users of the system, or to people in the vicinity of the

system, or loss of life or injury to other animals. System Damage may

involve direct or indirect financial losses. System Damage may involve

a wider environmental impact (such as an oil spill). System Damage

may involve more general damage (for example, through incorrect

activation of a building sprinkler system).

A System Fault means a Hardware Fault and / or a Software Fault.

A Software Fault means a manifestation of a Software Error or a Deliberate

Software Change.

A Hardware Fault means a manifestation of a Hardware Error, or a

Deliberate Hardware Change, or the result of physical damage. Physical

damage may arise – for example – from a broken connection, or from

the impact of electromagnetic interference (EMI), radiation, vibration or

humidity.

A Deliberate Software Change means an intentional change to the

implementation of any part of the System Software that occurs as a

result of a “computer virus” or any other form of malicious interference.

A Software Error means a mistake in the requirements, design, or

implementation (that is, programming) of any part of the System

Software.

A Deliberate Hardware Change means an intentional change to the

implementation of any part of the System Hardware that occurs as a

result of any form of malicious interference.

A Hardware Error means a mistake in the requirements, design, or

implementation of any part of the System Hardware.

System Software means all of the software in the system, including tasks,

scheduler, any support libraries and “startup” code.

System Hardware means all of the computing and related hardware in the

system, including any processing devices (such as microcontrollers,

microprocessors, FPGAs, DSPs and similar items), plus associated

peripherals (e.g. memory components) and any devices under control of

the computing devices (e.g. actuators), or providing information used by

these devices (e.g. sensors, communication links).

xv

Acronyms and abbreviations

ASIL Automotive Safety Integrity Level

BCET Best-Case Execution Time

CAN Controller Area Network

CBD Contract-Based Design

CLPD Complex Programmable Logic Device

CMSIS Cortex Microcontroller Software Interface Standard

COTS Commercial ‘Off The Shelf’

CPU Central Processor Unit

DMA Direct Memory Access

ECU Electronic Control Unit

EMI Electromagnetic Interference

ET Event Triggered

FAP Failure Assertion Programming

FFI Freedom From Interference

FPGA Field Programmable Gate Array

FS Functional Safety

FSR Functional Safety Requirement

MC Mixed Criticality

MCU Microcontroller (Unit)

MMU Memory Management Unit

MPU Memory Protection Unit

PTTES Patterns for Time-Triggered Embedded Systems

RMA Rate Monotonic Analysis

SIL Safety Integrity Level

SoC System on Chip

STA Static Timing Analysis

TG Task Guardian

TSIP Task Sequence Initialisation Period

TT Time Triggered

TTC Time-Triggered Co-operative

TTH Time-Triggered Hybrid

TTP Time-Triggered Pre-emptive

TTRD Time-Triggered Reference Design

WCET Worst-Case Execution Time

WDT Watchdog Timer

xvii

Reference designs1

TTRD02a TTC scheduler with ‘Heartbeat’ fault reporting

TTRD02b TTC scheduler with injected task overrun

TTRD02c TTC scheduler (porting example)

TTRD03a Simple framework for washing-machine controller

TTRD05a Instrumented TTC scheduler (BCET and WCET)

TTRD05b Instrumented TTC scheduler with task overrun

TTRD05c Instrumented TTC scheduler (tick jitter)

TTRD05d Instrumented TTC scheduler (task jitter)

TTRD05e TTC Dry scheduler

TTRD06a TTC “Super Loop” scheduler with hardware delay

TTRD06b Implementing a “Sandwich Delay”

TTRD07a TTC architecture: Nx3 operating modes

TTRD07b TTC architecture: Nx3 & “Fail Silent”

TTRD07c TTC architecture: Nx3, “Limp Home” & “Fail Silent”

TTRD08a TTC-TC MPU scheduler

TTRD09a TTC MoniTTor architecture (internal)

TTRD10a: TTC MoniTTor-PredicTTor (generic)

TTRD10b: TTC MoniTTor-PredicTTor (generic, async task set)

TTRD10c: TTC MoniTTor-PredicTTor (TSR protected by MPU)

TTRD10d: TTC MoniTTor-PredicTTor (TSR on external EEPROM)

TTRD11a: TTH scheduler with “emergency stop”

TTRD11b: TTH scheduler with long pre-empting tasks

TTRD11c: TTP scheduler with example task set

TTRD11d: TTP scheduler with BCET / WCET monitoring

TTRD12a: Instrumented TTH scheduler (tick jitter)

TTRD12b: TTH scheduler with reduced release jitter (idle task)

TTRD12c: TTP scheduler with reduced release jitter (idle task)

TTRD12d: TTP scheduler with MoniTTor and PredicTTor

TTRD13a: TTC scheduler with temperature monitoring

TTRD14a: System Platform TT01

TTRD14b: System Platform TT02

TTRD14c: System Platform TT03

TTRD15a: Framework for washing-machine controller (TT01)

TTRD15b: Create Tick List for TTRD15a (Normal Mode)

TTRD15c: Create Tick List for TTRD15a (Limp-Home Mode)

1 See: http://www.safetty.net/downloads/reference-designs

http://www.safetty.net/downloads/reference-designs

xix

International standards and guidelines

Reference in text Full reference

DO-178C DO-178C: 2012

IEC 60335 IEC 60335-1:2010 + A1: 2013

IEC 60601 IEC 60601-1-8: 2006 + A1: 2012

IEC 60730 IEC 60730-1: 2013

IEC 61508 IEC 61508: 2010

IEC 62304 IEC 62304: 2006

ISO 26262 ISO 26262: 2011

MISRA C MISRA C: 2012 (March 2013)

xxi

Preface

This book is concerned with the development of reliable, real-time embedded

systems. The particular focus is on the engineering of systems based on time-

triggered architectures.

In the remainder of this preface, I attempt to provide answers to questions that

prospective readers may have about the book contents.

a. What is a “reliable embedded system”?

I have provided a definition of the phrase “System Fault” on Page xiii.

My goal in this book is to present a model-based process for the development

of embedded applications that can be used to provide evidence that the system

concerned will be able to detect such faults and then handle them in an

appropriate manner, thereby avoiding Uncontrolled System Failures.

The end result is what I mean by a reliable embedded system.

b. Who needs reliable embedded systems?

Techniques for the development of reliable embedded systems are – clearly –

of great concern in safety-critical markets (e.g. the automotive, medical, rail

and aerospace industries), where Uncontrolled System Failures can have

immediate, fatal, consequences.

The growing challenge of developing complicated embedded systems in

traditional “safety” markets has been recognised, a fact that is reflected in the

emergence in recent years of new (or updated) international standards and

guidelines, including IEC 61508, ISO 26262 and DO-178C.

As products incorporating embedded processors continue to become ever

more ubiquitous, safety concerns now have a great impact on developers

working on devices that would not – at one time – have been thought to

require a very formal design, implementation and test process. As a

consequence, even development teams working on apparently “simple”

household appliances now need to address safety concerns. For example,

manufacturers need to ensure that the door of a washing machine cannot be

opened by a child during a “spin” cycle, and must do all they can to avoid the

risk of fires in “always on” applications, such as fridges and freezers. Again,

recent standards have emerged in these sectors (such as IEC 60730).

Reliability is – of course – not all about safety (in any sector). Subject to

inevitable cost constraints, most manufacturers wish to maximise the

reliability of the products that they produce, in order to reduce the cost of

warranty repairs, minimise product recalls and ensure repeat orders. As

xxii

systems grow more complicated, ensuring the reliability of embedded systems

can present significant challenges for any organisation.

I have found that the techniques presented in this book can help developers

(and development teams) in many sectors to produce reliable and secure

systems.

c. Why work with “time-triggered” systems?

As noted at the start of this Preface, the focus of this book is on TT systems.

Implementation of a TT system will typically start with a single interrupt that

is linked to the periodic overflow of a timer. This interrupt may drive a task

scheduler (a simple form of “operating system”). The scheduler will – in turn

– release the system tasks at predetermined points in time.

TT can be viewed as a subset of a more general event-triggered (ET)

architecture. Implementation of a system with an ET architecture will

typically involve use of multiple interrupts, each associated with specific

periodic events (such as timer overflows) or aperiodic events (such as the

arrival of messages over a communication bus at unknown points in time).

TT approaches provide an effective foundation for reliable real-time systems

because – during development and after construction – it is (compared with

equivalent ET designs) easy to model the system and, thereby, determine

whether all of the key timing requirements have been met. This can help to

reduce testing costs – and reduce business risks.

The deterministic behaviour of TT systems also offers very significant

advantages at run time, because – since we know precisely what the system

should be doing at a given point in time – we can very quickly determine

whether it is doing something wrong.

d. How does this book relate to international safety standards?

Throughout this book it is assumed that some readers will be developing

embedded systems in compliance with one or more international standards.

The standards discussed during this book include following:

 IEC 61508 (industrial systems / generic standard)

 ISO 26262 (automotive systems)

 IEC 60730 (household goods)

 IEC 62304 (medical systems)

 DO-178C (aircraft)

No prior knowledge of any of these standards is required in order to read this

book.

xxiii

Please note that full references to these standards are given on p.xix.

e. What programming language is used?

The software in this book is implemented almost entirely in ‘C’.

For developers using C, the “MISRA C” guidelines are widely employed as

a “language subset”, with associated coding guidelines (MISRA, 2012).

f. Is the source code “freeware”?

This book is supported by a complete set of “Time-Triggered Reference

Designs” (TTRDs).

Both the TTRDs and this book describe patented2 technology and are subject

to copyright and other restrictions.

The TTRDs provided with this book may be used without charge:

[i] by universities and colleges in courses for which a degree up to and

including “MSc” level (or equivalent) is awarded; [ii] for non-commercial

projects carried out by individuals and hobbyists.

All other use of any of the TTRDs associated with this book requires purchase

(and maintenance) of a low-cost, royalty free ReliabiliTTy Technology

Licence:

http://www.safetty.net/products/reliabilitty

g. How does this book relate to other books in the “ERES” series?

The focus throughout all of the books in the ERES series is on single-program,

real-time systems.

Typical applications for the techniques described in this series include control

systems for aircraft, steer-by-wire systems for passenger cars, patient

monitoring devices in a hospital environment, electronic door locks on

railway carriages, and controllers for domestic “white goods”.

Such systems are currently implemented using a wide range of different

hardware “targets”, including various different microcontroller families

(some with a single core, some with multiple independent cores, some with

“lockstep” architectures) and various FPGA / CPLD platforms (with or

without a “soft” or “hard” processor core).

Given the significant differences between the various platforms available and

the fact that most individual developers (and many organisations) tend to

work in a specific sector, using a limited range of hardware, I decided that I

would simply “muddy the water” by trying to cover numerous microcontroller

2 Patents applied for.

http://www.safetty.net/products/reliabilitty

xxiv

families in a single version of this book. Instead, ERES will be released in a

number of distinct editions, each with a focus on a particular (or small

number) of hardware targets and related application sectors.

You’ll find up-to-date information about the complete book series here:

http://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems

h. What processor hardware is used in this book?

In this edition of the book, the main processor target is an NXP® LPC1769

microcontroller. In almost all cases, the code examples can be executed on a

low-cost and readily-available evaluation platform.3

The LPC1769 is an ARM® Cortex-M3 based microcontroller (MCU) that

operates at CPU frequencies of up to 120 MHz.

The LPC1769 is intended for use in applications such as: industrial

networking; motor control; white goods; eMetering; alarm systems; and

lighting control.

The two case studies in this book focus on the use of the LPC1769

microcontroller in white goods (specifically, a washing machine). However,

the TT software architecture that is employed in these examples is generic in

nature and can be employed in many different systems (in various sectors).

Many of the examples employ key LPC1769 components – such as the

Memory Protection Unit – in order to improve system reliability and safety.

i. How does this book relate to “PTTES”?

This book is not intended as an introductory text: it is assumed that readers

already have experience developing embedded systems, and that they have

some understanding of the concept of time-triggered systems. My previous

book “Patterns for Time-Triggered Embedded Systems” (PTTES) can be used

to provide background reading.4

It is perhaps worth noting that I completed work on PTTES around 15 years

ago. Since then, I estimate that I’ve worked on or advised on more than 200

‘TT’ projects, and helped around 50 companies to make use of a TT approach

for the first time. I’ve learned a great deal during this process.

In the present book, I’ve done my best to encapsulate my experience (to date)

in the development of reliable, real-time embedded systems.

3 Further information about this hardware platform is presented in Appendix 2.
4 “PTTES” can be downloaded here: http://www.safetty.net/publications/pttes

http://www.safetty.net/publications/the-engineering-of-reliable-embedded-systems
http://www.safetty.net/publications/pttes

xxv

j. Is there anyone that you’d like to thank?

As with my previous books, I’d like to use this platform to say a public “thank

you” to a number of people.

In total, I spent 21 years in the Engineering Department at the University of

Leicester (UoL) before leaving to set up SafeTTy Systems. I’d like to thank

the following people for their friendship and support over the years:

Fernando Schlindwein, John Fothergill, Len Dissado, Maureen Strange,

Barrie Jones, Ian Postlethwaite, Andrew Norman, Simon Hogg, Simon Gill,

John Beynon, Hans Bleis, Pete Barwell, Chris Marlow, Chris Edwards,

Julie Hage, Matt Turner, Bill Manners, Paul Lefley, Alan Stocker,

Barry Chester, Michelle Pryce, Tony Forryan, Tom Robotham, Geoff

Folkard, Declan Bates, Tim Pearce, Will Peasgood, Ian Jarvis, Dan Walker,

Hong Dong, Sarah Hainsworth, Paul Gostelow, Sarah Spurgeon, Andy

Truman, Alan Wale, Alan Cocks, Lesley Dexter, Dave Siddle, Guido

Herrmann, Andy Chorley, Surjit Kaur, Julie Clayton, Andy Willby,

Dave Dryden and Phil Brown.

In the Embedded Systems Laboratory (at the University of Leicester), I had

the opportunity to work with an exceptional research team. I’d particularly

like to thank Devaraj Ayavoo, Keith Athaide, Zemian Hughes, Pete Vidler,

Farah Lakhani, Aley Imran Rizvi, Susan Kurian, Musharraf Hanif,

Kam Chan, Ioannis Kyriakopoulos, Michael Short and Imran Sheikh, many

of whom I worked with for many years (both in the ESL and at TTE Systems).

I also enjoyed having the opportunity to work with Tanya Vladimirova,

Royan Ong, Teera Phatrapornnant, Chisanga Mwelwa, Ayman Gendy,

Huiyan Wang, Muhammad Amir, Adi Maaita, Tim Edwards,

Ricardo Bautista-Quintero, Douglas Mearns, Yuhua Li, Noor

Azurati Ahmad, Mouaaz Nahas, Chinmay Parikh, Kien Seng Wong,

David Sewell, Jianzhong Fang and Qiang Huang.

In 2005, I was asked by staff in what became the “Enterprise and Business

Development Office” (at the University of Leicester) to begin the process that

led to the formation of TTE Systems Ltd. Tim Maskell was there from the

start, and it was always a great pleasure working with him. I also enjoyed

working with David Ward, Bill Brammar and James Hunt.

The “TTE” team involved a number of my former research colleagues, and I

also had the pleasure of working with Muhammad Waqas Raza, Anjali Das,

Adam Rizal Azwar, Rishi Balasingham, Irfan Mir, Rajas More and

Vasudevan Pillaiand Balu. At this time, I also enjoyed having the opportunity

to work with my first team of Board members and investors: I’d particularly

like to thank Alan Lamb, Clive Smith, Penny Attridge, Jonathan Gee,

xxvi

Tim Maskell (again), Viv Hallam, Chris Jones and Ederyn Williams for their

support over the lifetime of the company.

Since the start of 2014, I’ve been focused on getting SafeTTy Systems off the

ground. Steve Thompson and Farah Lakhani joined me at the start of this new

project and it has been a pleasure to have the opportunity to work with them

again.

I’m grateful to Cass and Kynall (for being there when I have needed them – I

hope to return the favour before too long), and to Bruce and Biggles (for

keeping my weight down). I’d like to thank David Bowie for “The Next

Day”, Thom Yorke and Radiohead for “Kid A”, and Sigur Rós for “()”.

Last but not least, I’d like to thank Sarah for having faith in me in the last two

years, as I took our lives “off piste”.

Michael J. Pont

January 2015

PART ONE: INTRODUCTION

“If you want more effective programmers, you will discover that

they should not waste their time debugging, they should not

introduce the bugs to start with.”

Edsger W. Dijkstra, 1972.

3

CHAPTER 1: Introduction

In this chapter we provide an overview of the material that is covered in

detail in the remainder of this book.

Figure 1: The engineering of reliable real-time embedded systems (overview). In this book, our
focus will be on the stages shown on the right of the figure (grey boxes).

1.1. Introduction

The process of engineering reliable real-time embedded systems (the focus of

this book) is summarised schematically in Figure 1. Projects will typically

begin by recording both the functional requirements and the timing

requirements for the system, and by considering potential faults and hazards.

Design and implementation processes will then follow, during and after which

test and verification activities will be carried out (in order to confirm that the

requirements have been met in full). Run-time monitoring will then be

performed as the system operates.

The particular focus of this book is on the development of this type of system

using time-triggered (TT) architectures.

What distinguishes TT approaches is that it is possible to model the system

behaviour precisely and – therefore – determine whether all of the timing

requirements have been met. It is important to appreciate that we can use our

models to confirm that the system behaviour is correct both during

development and at run time. This can provide a very high level of confidence

that the system will either: [i] operate precisely as required; or [ii] move into

a pre-determined Limp-Home Mode or Fail-Silent Mode.

In this chapter, we explain what a time-triggered architecture is, and we

consider some of the processes involved in developing such systems: these

processes will then be explored in detail in the remainder of the text.

Requirements
(functional)

Impact
of Faults
& Hazards

Requirements
(temporal)

Real-time
embedded

system

Design &
implement

Test & verify

Run-time
monitoring

4

1.2. Single-program, real-time embedded systems

An embedded computer system (“embedded system”) is usually based on one

or more processors (for example, microcontrollers or microprocessors), and

some software that will execute on such processor(s).

Embedded systems are widely used in a variety of applications ranging from

brake controllers in passenger vehicles to multi-function mobile telephones.

The focus in this text is on what are sometimes called “single-program”

embedded systems. Such applications are represented by systems such as

engine controllers for aircraft, steer-by-wire systems for passenger cars,

patient monitoring devices in a hospital environment, automated door locks

on railway carriages, and controllers for domestic washing machines.

The above systems have the label “single-program” because the general user

is not able to change the software on the system (in the way that programs are

installed on a laptop, or “apps” are added to a smartphone): instead, any

changes to the software in the steering system – for example – will be

performed as part of a service operation, by suitably-qualified individuals.

What also distinguishes the systems above (and those discussed throughout

this book) is that they have real-time characteristics.

Consider, for example, the greatly simplified aircraft autopilot application

illustrated schematically in Figure 2. Here we assume that the pilot has

entered the required course heading, and that the system must make regular

and frequent changes to the rudder, elevator, aileron and engine settings (for

example) in order to keep the aircraft following this path.

An important characteristic of this system is the need to process inputs and

generate outputs at pre-determined time intervals, on a time scale measured

in milliseconds. In this case, even a slight delay in making changes to the

rudder setting (for example) may cause the plane to oscillate very

unpleasantly or, in extreme circumstances, even to crash.

In order to be able to justify the use of the aircraft system in practice (and to

have the autopilot system certified), it is not enough simply to ensure that the

processing is ‘as fast as we can make it’: in this situation, as in many other

real-time applications, the key characteristic is deterministic processing.

What this means is that in many real-time systems we need to be able to

guarantee that a particular activity will always be completed within – say –

2 ms (+/- 5 µs), or at 6 ms intervals (+/- 1 µs): if the processing does not match

this specification, then the application is not just slower than we would like,

it is simply not fit for purpose.

5

Reminder

1 second (s) = 1.0 second (100 seconds) = 1000 ms.
1 millisecond (ms) = 0.001 seconds (10-3 seconds) = 1000 µs.
1 microsecond (µs) = 0.000001 seconds (10-6 seconds) = 1000 ns.
1 nanosecond (ns) = 0.000000001 seconds (10-9 seconds).

Box 1

Figure 2: A high-level schematic view of an autopilot system.

Rudder

r

Elevator

e

Aileron

a

p

r

q

x,

y,

z,

x, y, z = position coordinates

= velocity cordinates

p = roll rate

q = pitch rate

r = yaw rate

Aircraft

Autopilot

System

(schematic)

Position

sensors

(GPS)

Velocity

sensors

(3 axes)

Yaw (rate)

sensor

Pitch

(rate)

sensor

Roll

(rate)

sensor

Main

pilot

controls

Rudder

Elevator

Aileron

Main engine

(fuel)

controllers

6

Tom De Marco has provided a graphic description of this form of hard real-

time requirement in practice, quoting the words of a manager on a software

project:

“We build systems that reside in a small telemetry computer, equipped

with all kinds of sensors to measure electromagnetic fields and changes

in temperature, sound and physical disturbance. We analyze these

signals and transmit the results back to a remote computer over a wide-

band channel. Our computer is at one end of a one-meter long bar and

at the other end is a nuclear device. We drop them together down a big

hole in the ground and when the device detonates, our computer

collects data on the leading edge of the blast. The first two-and-a-

quarter milliseconds after detonation are the most interesting. Of

course, long before millisecond three, things have gone down hill badly

for our little computer. We think of that as a real-time constraint.”

[De Marco, writing in the foreword to Hatley and Pirbhai, 1987]

In this case, it is clear that this real-time system must complete its recording

on time: it has no opportunity for a “second try”. This is an extreme example

of what is sometimes referred to as a ‘hard’ real-time system.

1.3. TT vs. ET architectures

When creating a single-program design, developers must choose an

appropriate system architecture. One such architecture is a “time-triggered”

(TT) architecture. Implementation of a TT architecture will typically involve

use of a single interrupt that is linked to the periodic overflow of a timer. This

interrupt will be used to drive a task scheduler (a simple form of “operating

system”). The scheduler will – in turn – release the system tasks at

predetermined points in time.

TT architectures can be viewed as a “safer subset” of a more general event-

triggered architecture (see Figure 3 and Figure 4). Implementation of a

system with an event-triggered architecture will typically involve use of

multiple interrupts, each associated with specific periodic events (such as

timer overflows) and aperiodic events (such as the arrival of messages over a

communication bus at random points in time). ET designs are traditionally

associated with the use of what is known as a real-time operating system (or

RTOS), though use of such a software platform is not a defining characteristic

of an ET architecture.

7

Figure 3: Safer language subsets (for example, MISRA C) are employed by many organisations in
order to improve system reliability. See MISRA (2012).

Figure 4: In a manner similar to MISRA C (Figure 3), TT approaches provide a “safer subset” of ET
designs, at the system architecture level.

Whether TT or ET architectures are employed, the system tasks are typically

named blocks of program code that perform a particular activity (for example,

a task may check to see if a switch has been pressed): tasks are often

implemented as functions in programming languages such as ‘C’ (and this is

the approached followed in the present book).

It should be noted that – at the time of writing (2014) – the use of ET

architectures and RTOS solutions is significantly more common than the use

of TT solutions, at least in projects that are not safety related.

1.4. Modelling system timing characteristics

TT computer systems execute tasks according to a predetermined task

schedule. As noted in Section 1.3, TT systems are typically (but not

necessarily) implemented using a design based on a single interrupt linked to

the periodic overflow of a timer.

For example, Figure 5 shows a set of tasks (in this case Task A, Task B, Task

C and Task D) that might be executed by a TT computer system according to

a predetermined task schedule.

The C Programming Language

MISRA C

A “safe subset”

Event-Triggered Systems

Time-Triggered Systems

A “safe subset”

8

Figure 5: A set of tasks being released according to a pre-determined schedule.

In Figure 5, the release of each sub-group of tasks (for example, Task A and

Task B) is triggered by what is usually called a timer “tick”. In most designs

(including all of those discussed in detail in this book), the timer tick is

implemented by means of a timer interrupt. These timer ticks are periodic.

In an aerospace application, the “tick interval” (that is, the time interval

between timer ticks) of 25 ms might be used, but shorter tick intervals (e.g. 1

ms or 100 µs) are more common in other systems.

In Figure 5, the task sequence executed by the computer system is as follows:

Task A, Task C, Task B, Task D. In many designs, such a task sequence will

be determined at design time (to meet the system requirements) and will be

repeated “forever” when the system runs (until the system is halted or

powered down, or a System Failure occurs).

Sometimes it is helpful (not least during the design process) to think of this

task sequence as a “Tick List”: such a list lays out the sequence of tasks that

will run after each system tick.

For example, the Tick List corresponding to the task set shown in Figure 5

could be represented as follows:

[Tick 0]
Task A
Task C
[Tick 1]
Task B
Task D

Once the system reaches the end of the Tick List, it starts again at the

beginning.

In Figure 5, the tasks are co-operative (or “non-pre-emptive”) in nature: each

task must complete before another task can execute. The design shown in

these figures can be described as “time triggered co-operative” (TTC) in

nature.

We say more about designs that involve task pre-emption in Section 1.6.

Time

...A B A BC D C D

9

The importance of Tick Lists

The creation and use of Tick Lists is central to the engineering of reliable TT
systems.

Through the use of this simple model, we can determine key system characteristics
– such as response times, task jitter levels and maximum CPU loading – very early
in the design process.

We can then continue to check these characteristics throughout the development
process, and during run-time operation of the system.

We will consider the creation and use of Tick Lists in detail in Chapter 4.

Box 2

Figure 6: A schematic representation of the key components in a TTC scheduler.

1.5. Working with “TTC” schedulers

Many (but by no means all) TT designs are implemented using co-operative

tasks and a “TTC” scheduler.

Figure 6 shows a schematic representation of the key components in such a

scheduler. First, there is function SCH_Update(): in this example, this is

linked to a timer that is assumed to generate periodic “ticks” – that is, timer

interrupts – every millisecond.

The SCH_Update() function is responsible for keeping track of elapsed time.

Within the function main() we assume that there are functions to initialise the

scheduler, initialise the tasks and then add the tasks to the schedule.

In Figure 6, function main(), the process of releasing the system tasks is

carried out in the function SCH_Dispatch_Tasks().

The operation of a typical SCH_Dispatch() function is illustrated

schematically in Figure 7. In this figure, the dispatcher begins by determining

whether there is any task that is currently due to run. If the answer to this

question is “yes”, the dispatcher runs the task.

int main(void)
{
SYSTEM_Init();

SCH_Start();

while(1)
{
SCH_Dispatch_Tasks();
}

return 1;
}

void SCH_Update(void)
{
Tick_count++;
}

1 ms timer

10

Figure 7: The operation of a task dispatcher.

The dispatcher repeats this process until there are no tasks remaining that are

due to run. The dispatcher then puts the processor to sleep: that is, it places

the processor into a power-saving mode. The processor will remain in this

power-saving mode until awakened by the next timer interrupt: at this point

the timer ISR (Figure 6) will be called again, followed by the next call to the

dispatcher function (Figure 7).

It should be noted that there is a deliberate split between the process of timer

updates and the process of task dispatching (shown in main() in Figure 6 and

described in more detail in Figure 7). This split means that it is possible for

the scheduler to execute tasks that are longer than one tick interval without

missing timer ticks. This gives greater flexibility in the system design, by

allowing use of a short tick interval (which can make the system more

responsive) and longer tasks (which can simplify the design process). This

split may also help to make the system more robust in the event of run-time

faults: we say more about this in Chapter 2.

Flexibility in the design process and the ability to recover from transient faults

are two reasons why “dynamic” TT designs (with a separate timer ISR and

task dispatch functions) are generally preferred over simpler designs in which

tasks are dispatched from the timer ISR.

Figure 8: Executing tasks using a TTH scheduler. See text for details.

Start task
dispatcher

Run task

Determine which
task is due to run
next in this tick

(if any)

Is there a
task due to

run?

Go to sleep

End task dispatcher

No

Yes

Time

...P P P PA B A B

Tick 0 Tick 1 Tick 2 Tick 3

11

1.6. Supporting task pre-emption

The designs discussed in Section 1.4 and Section 1.5 involve co-operative

tasks: this means that each task “runs to completion” after it has been released.

In many TT designs, high-priority tasks can interrupt (pre-empt) lower-

priority tasks.

For example, Figure 8 shows a set of three tasks: Task A (a low-priority, co-

operative task), Task B (another low-priority, co-operative task), and Task P

(a higher-priority pre-empting task). In this example, the lower-priority tasks

may be pre-empted periodically by the higher-priority task. More generally,

this kind of “time triggered hybrid” (TTH) design may involve multiple co-

operative tasks (all with an equal priority) and one or more pre-empting tasks

(of higher priority).

We can also create “time-triggered pre-emptive” (TTP) schedulers: these

support multiple levels of task priority.

We can – of course – record the Tick List for TTH and TTP designs. For

example, the task sequence for Figure 8 could be listed as follows: Task P,

Task A, Task P, Task B, Task P, Task A, Task P, Task B.

We say more about task pre-emption in Part Three.

1.7. Different system modes

Almost all practical embedded systems have at least two system modes, called

something like “Normal mode” and “Fault mode”. However most have

additional system modes. For example, Figure 9 shows a schematic

representation of the software architecture for an aircraft system with system

modes corresponding to the different flight stages (preparing for takeoff,

climbing to cruising height, etc).

In this book, we consider that the system mode has changed if the task set has

changed. It should therefore be clear that we are likely to have a different

Tick List for each system mode.

Please note that – even in a TT design – the timing of the transition between

system modes is not generally known in advance (because, for example, the

time taken for the plane shown in Figure 9 to reach cruising height will vary

with weather conditions), but this does not alter the development process.

The key feature of all TT designs is that – whatever the mode – the tasks are

always released according to a schedule that is determined, validated and

verified when the system is designed.

12

Figure 9: An example of a system with multiple operating modes.

We say more about system modes in Chapter 7.

1.8. A “Model-Build-Monitor” methodology

A three-stage development process is described in detail during the course of

this book.

The first stage involves modelling the system (using one or more Tick Lists,

depending on the number of modes), as outlined in Section 1.4. The second

stage involves building the system (for example, using a simple TTC

scheduler, as outlined in Section 1.5). The third stage involves adding support

for run-time monitoring.

Run-time monitoring is essential because we need to ensure that the computer

system functions correctly in the event that Hardware Faults occur (as a result,

for example, of electromagnetic interference, or physical damage: see

“Definitions” on Page xiii). In addition, as designs become larger, it becomes

unrealistic to assume that there will not be residual Software Errors in

products that have been released into the field: it is clearly important that there

should not be an Uncontrolled System Failure in the event that such errors are

present. Beyond issues with possible Hardware Faults and residual errors in

complex software, we may also need to be concerned about the possibility

that attempts could be made to introduce Deliberate Software Changes into

the system, by means of “computer viruses” and similar attacks.

The approach to run-time monitoring discussed in this book involves

checking for resource-related faults and / or time-related faults (Figure 10).

As an example of resource-related fault, assume that Pin 1-23 on our

microcontroller is intended to be used exclusively by Task 45 to activate the

steering-column lock in a passenger vehicle. This lock is intended to be

engaged (to secure the vehicle against theft) only after the driver has parked

and left the vehicle.

13

Figure 10: Run-time monitoring is employed to guard against Uncontrolled System Failures.
In this book, we will check for faults that are evidenced by incorrect CPU usage (task overruns,

task underruns and task sequencing) as well as faults related to other hardware resources
(such as CAN controllers, analogue-to-digital convertors, port pins and memory).

A (potentially very serious) resource-related fault would occur if Pin 1-23 was

to be activated by another task in the system while the vehicle was moving at

high speed.

Of course, both ET and TT designs need to employ mechanisms to check for

resource-related faults. However, this process is much more easily modelled

(and therefore more deterministic) in TT designs. For instance, in “TTC”

designs, precise control of access to shared resources is intrinsic to the

architecture (because all tasks “run to completion”). Even in TT designs that

involve task pre-emption, controlling access to shared resources is much more

straightforward than in ET designs. One very important consequence is that

while the impact of priority inversion (PI) can be ameliorated in ET designs

through the use of mechanisms such as “ceiling protocols” (as we will discuss

in Chapter 12), PI problems can be eliminated only through the use of a TT

solution.

Beyond this, we have found that a design approach based on the concept of

“Task Contracts” can help developers to implement effective “Resource

Barriers” in TT systems. We say more about this approach in Chapter 8.

In addition to resource-related faults, we also need to consider timing related

faults (please refer again to Figure 10). Here, a second – very significant –

advantage of TT designs comes into play.

As we have seen in this chapter, TT systems are – by definition – designed to

execute sets of tasks according to one or more pre-determined schedules: in

each system mode, the required sequence of tasks is known in advance.

During the design process, the task schedules are carefully reviewed and

assessed against the system requirements, and at run time a simple task

scheduler is used to release the tasks at the correct times. If the task set is not

then executed in the correct sequence at run time, this may be symptomatic

of a serious fault. If such a situation is not detected quickly, this may have

Resource Barrier

(Protected against
resource

corruption)

Resource Barrier
+

Time Barrier

(Fully protected)

No protection

Time Barrier

(Protected against
task overruns,

underruns, and
sequence errors)

Time

Resources

14

severe consequences for users of the system, or those in the vicinity of the

system.

For example, consider that we have detected a fault in the braking system of

a passenger car: if the driver is already applying the brakes in an emergency

situation when we detect the fault, the fault-detection mechanism is of little

value. Similarly, late detection (or lack of detection) of faults in aerospace

systems, industrial systems, defence systems, medical systems, financial

systems or even household goods may also result in injury, loss of human life

and / or very significant financial losses.

Using the techniques presented in Chapter 10, we can perform “predictive

monitoring” of the task execution sequence during the system operation. In

many cases, this means that we can detect that the system is about to run an

incorrect task before this task even begins executing.

This type of solution can greatly simplify the process of achieving compliance

with international standards and guidelines. For example, to achieve

compliance with the influential IEC 61508 standard, many designs require the

use of a “diverse monitor” unit. Such a unit is intended to prevent the system

from entering an unsafe state5, which is precisely what we can achieve using

predictive monitoring of a TT architecture.

Similar requirements arise from other standards (for example, the need to

implement “Safety Mechanisms” in ISO 26262).

1.9. How can we avoid Uncontrolled System Failures?

As we conclude this introductory chapter, we’ll consider one of the key

challenges facing developers of modern embedded systems.

As we have discussed in previous sections, embedded systems typically

consist of: [i] a set of tasks; [ii] a scheduler, operating system or similar

software framework that will have some control over the release of the tasks.

In an ideal world, the resulting architecture might look something like that

illustrated in Figure 11 (left). From the developer’s perspective, such a design

may be attractive, because each software component is isolated: this – for

example – makes run-time monitoring straightforward, and means that it is

easy to add further tasks to the system (for example, during development or

later system upgrades) with minimal impact on the existing tasks.

5 It is sometimes assumed that a “diverse monitor” is intended to detect when a system has

entered into an unsafe state, but that is not what is required in IEC 61508 [2010].

15

Figure 11: An “ideal” implementation of an embedded system with two tasks (left)
along with a more practical implementation (right).

In practice, such a “one processor per task” design would prove to be

impossibly expensive in most sectors. Instead, we are likely to have multiple

tasks and the scheduler / operating system sharing the same processor (Figure

11, right).

In this real-world design, a key design aim will be to ensure that no task can

interfere with any other task, and that no task can interfere with the scheduler:

this is sometimes described as a goal of “Freedom From Interference” (FFI).

FFI is a very worthy goal. Unfortunately, in any non-trivial embedded

system, there are a great many ways in which it is possible for tasks (and other

software components) that share a CPU, memory and other resources to

interact. As a consequence, any claim that we can prevent any interference

would be likely to be met with some scepticism.

This does not mean that we need to dismiss FFI as “unachievable”, because –

while interference may not be preventable – it may be detectable.

More specifically, we will argue in this book that – through use of an

appropriate implementation of a TT design, with a matched monitoring

system – we will often be able to meet FFI requirements. We can do this

because the engineering approach described in the following chapters can be

used to: [i] provide evidence of the circumstances in which we will be able to

detect any interference between tasks, or between tasks and the scheduler, in

a given system; and [ii] provide evidence of our ability to move the system

into Limp-Home Mode or Fail-Silent Mode in the event that such interference

is detected.

Overall, the goal – in this FFI example and with all of the systems that we

consider in this book – is to prevent Uncontrolled System Failures. We will

do this by building upon a TT system platform, such as that illustrated

schematically in Figure 12.

Task A

Task B

Scheduler

Task A Task B

Scheduler

16

Figure 12: A schematic representation of one of the platforms that we will use in this book in
order to avoid Uncontrolled System Failures.

1.10. Conclusions

In this introductory chapter, we’ve provided an overview of the material that

is covered in detail in the remainder of this book.

In Chapter 2, we will introduce our first task scheduler.

Task A

TT Scheduler

Task ATask ATask ATask ATask ATask ATask ATask ATask ATask ATask A
TT Monitoring /

Control
System

17

CHAPTER 2: Creating a simple TTC scheduler

In Chapter 1, we noted that the implementation of most time-triggered

embedded systems involves the use of a task scheduler. In this chapter, we

explore the design of a first simple scheduler for use with sets of periodic,

co-operative tasks.

Related TTRDs

A list of the TTRDs discussed in this chapter is included below.

C programming language (LPC1769 target):

 TTRD02a: TTC scheduler with WDT support and ‘Heartbeat’ fault reporting

 TTRD02b: TTC scheduler with injected task overrun

 TTRD02c: TTC scheduler (porting example)

2.1. Introduction

In this chapter, we’ll start by exploring the TTC scheduler “TTRD02a”. To

introduce TTRD02a, we will present a simple “Heartbeat” example in which

the scheduler is used to flash an LED with a 50% duty cycle and a flash rate

of 0.5 Hz: that is, the LED will be “on” for 1 second, then “off” for one

second, then “on” for one second, and so on (Figure 13).

Figure 14 provides an overview of the structure and use of this scheduler.

If you have previously used one of the schedulers described in “Patterns for

Time-Triggered Embedded Systems” (Pont, 2001), then much of the material

presented in this chapter will be familiar. However, there are some important

differences between the PTTES schedulers and those presented in this

chapter. The main differences arise as a result of the new system foundation:

this is illustrated schematically in Figure 13.

Figure 13: A schematic representation of a microcontroller running a TTC scheduler and executing
a “Heartbeat” task.

18

Figure 14: An overview of the structure and use of a TTC scheduler.

Figure 15: The foundation of the scheduler designs presented in this book.

Perhaps the most immediately obvious differences between the PTTES

schedulers and those described here can be seen in the way that the

SCH_Update() function and SCH_Dispatch() function are structured: please

refer to Section 2.5 and Section 2.7, respectively, for further details.

There is also a significant difference in the recommended initialisation

process for the schedulers presented in this book when compared with the

approach presented in PTTES. More specifically, we now recommend that

the system initialisation process is split between function main() and function

SYSTEM_Init().

An example of a suitable implementation of function main() is shown in

Figure 14.

We will consider the scheduling functions that are called in main –

SCH_Start() and SCH_Dispatch_Tasks() – shortly. In this section, we will

focus on the system initialisation function (see Listing 7, on p.48)6.

The first point to note about the initialisation process illustrated in this chapter

is that the system has two operating modes: “FAIL_SILENT” and

“NORMAL”. In this example, any reset that is caused by the watchdog timer

(WDT) causes the system to enter the FAIL_SILENT mode, while a normal

power-on reset (and any other reset events) cause the system to enter

NORMAL mode.

6 Throughout this book, longer code listings are located at the end of each chapter.

int main(void)
{
SYSTEM_Init();

SCH_Start();

while(1)
{
SCH_Dispatch_Tasks();
}

return 1;
}

void SysTick_Handler(void)
{
Tick_count++;
}

SysTick Timer

Processing
Unit

Processor
Reset

Mechanism

System-Mode Data

Processor
Configuration
Mechanism

19

In FAIL_SILENT mode, the system simply “halts” (Code Fragment 1).7

case FAIL_SILENT:
 {
 // Reset caused by WDT
 // Trigger "fail silent" behaviour
 SYSTEM_Perform_Safe_Shutdown();

Code Fragment 1: Entering “Fail_Silent” mode.

There really isn’t very much more that we can do in this mode in the Heartbeat

demo, but – in a real system design – this should be where we end up if a

serious fault has been detected by the system (and no other way of handling

this fault has been identified). Deciding what to do in these circumstances

requires careful consideration during the system development process.8

As a starting point, we need to consider what to do with the system port pins

in these circumstances. Our general goal is to ensure that the pins are left in

a state where they can do minimum damage. For example, it may be possible

to turn off any dangerous equipment that is under the control of the computer

system by setting appropriate levels on the port pins.

Other options may also need to be considered. For example, if the computer

system is connected to other devices or equipment over a computer network

(wired or wireless) we may wish to try and send out a message to the other

components to indicate that the computer system has failed.

When the system reset is not caused by the WDT then – in this example – we

enter NORMAL mode.9

In this mode, we need to do the following to initialise the system:

 set up the WDT, and associated WATCHDOG_Update() task;

 set up the scheduler;

 call the initialisation functions for all other tasks; and,

 add the tasks to the schedule.

In our example, we first set up the watchdog timer.

7 You will find the code for the function SYSTEM_Perform_Safe_Shutdown() in Listing 7

(on p.46).
8 We will consider this matter in detail in Chapter 13.
9 In many system designs, there will be multiple operating modes. We consider how such

designs can be implemented in Chapter 7.

20

When used as described in this chapter, a WDT is intended to force a

processor reset (and – thereby – place the system into a FAIL_SILENT mode)

under the following circumstances:

 when the system becomes overloaded, usually as a result of one or more

tasks exceeding their predicted “worst-case execution time” (WCET):

this is a task overrun situation; or,

 when the system fails to release the WATCHDOG_Update() task

according to the pre-determined schedule for any other reason.

In TTC designs where it has been determined that – for every tick in the

hyperperiod – the sum of the task execution times of the tasks that are

scheduled to run is less than the tick interval, then a WDT timeout period very

slightly larger than the tick interval is often used.

Our example design comfortably meets the above execution-time criteria and

has a tick interval of 1 ms: we therefore set the watchdog timeout to just over

1 ms, as follows:

// Set up WDT (timeout in *microseconds*)
WATCHDOG_Init(1100);

We’ll look at the details of the WDT configuration in Section 2.11.

Following configuration of this timer, we then set up the scheduler with 1 ms

ticks, using the SCH_Init() function:

// Set up scheduler for 1 ms ticks (tick interval *milliseconds*)
SCH_Init(1);

Note that if the system cannot be configured with the required tick interval,

we force a system reset (using the WDT unit): following the reset, the system

will then enter a FAIL_SILENT mode. This type of WDT-induced mode

change will be common in many of the designs that we consider in this book

(in various different circumstances).

We will provide further information about the SCH_Init() function in

Section 2.4.

Assuming that initialisation of the scheduler was successful, we then prepare

for the Heartbeat task, by means of the HEARTBEAT_Init() function.

Further information is provided about the Heartbeat task in Section 2.13: for

now, we will simply assume that this is used to configure an I/O pin that has

been connected to LED2 on the LPC1769 board (please refer to Appendix 1

for details).

21

SCH_MAX_TASKS

You will find SCH_MAX_TASKS in “Scheduler Header” file in all designs in this book.

This constant must be set to a value that is at least as large as the number of tasks
that are added to the schedule: this process is not automatic and must be checked
for each project.

Box 3

2.2. A first TTC scheduler (TTRD02a)

Having considered, in outline, how the system will be initialised, we now

consider the internal structure and operation of the scheduler itself.

The TTRD02a scheduler presented in this chapter is made up of the following

key components:

 A scheduler data structure.

 An initialisation function.

 An interrupt service routine (ISR), used to update the scheduler.

 A function for adding tasks to the schedule.

 A dispatcher function that releases tasks when they are due to run.

We consider each of the required components in the sections that follow.

2.3. The scheduler data structure and task array

At the heart of TTRD02a is a user-defined data type (sTask) that collects

together the information required about each task.

Listing 4 shows the sTask implementation used in TTRD02a.

The task list is then defined in the main scheduler file as follows:

sTask SCH_tasks_G[SCH_MAX_TASKS];

The members of sTask are documented in Table 1.

2.4. The ‘Init’ function

The scheduler initialisation function is responsible for:

 initialising the global fault variable;

 initialising the task array; and,

 configuring the scheduler tick.

The initialisation process begins as shown in Code Fragment 2.

22

 // Reset the global fault variable
 Fault_code_G = 0;

 for (i = 0; i < SCH_MAX_TASKS; i++)
 {
 SCH_tasks_G[i].pTask = 0;
 }

Code Fragment 2: The start of the scheduler initialisation process.

In a manner similar to the PTTES schedulers, a global variable

(Fault_code_G) is used to report fault codes, usually via the Heartbeat task:

please see Section 2.13 for further information about this.

The fault codes themselves can be found in the Project Header file (main.h,

Listing 1).

The next step in the scheduler initialisation process involves setting up the

timer ticks.

In TTRD02a, this code is based on the ARM CMSIS10.

Table 1: The members of the sTask data structure (as used in TTRD02a).

Member Description

void (*pTask)(void) A pointer to the task that is to be scheduled.
The task must be implemented as a “void void” function.
See Section 2.13 for an example.

uint32_t Delay The time (in ticks) before the task will next execute.

uint32_t Period The task period (in ticks).

uint32_t WCET The worst-case execution time for the task (in µs).
Please note that this information is not used directly in
TTRD02a, but is employed during schedulability analysis
(see Chapter 4). In addition, in later schedulers in this
book, this information is used to assist in the detection
of run-time faults (see Chapter 9 and Chapter 11).

uint32_t BCET The best-case execution time for the task (in µs).
Again, this information is not used directly in TTRD02a,
but is employed during schedulability analysis and – in
later schedulers – it is used to assist in the detection of
run-time faults.

10 Cortex® Microcontroller Software Interface Standard.

23

As part of this standard, ARM provides a template file system_device.c that

must be adapted by the manufacturer of the corresponding microcontroller to

match their device.

At a minimum, system_device.c must provide:

 a device-specific system configuration function, SystemInit(); and,

 a global variable that represents the system operating frequency,

SystemCoreClock.

The SystemInit() function performs basic device configuration, including

(typically) initialisation of the oscillator unit (PLL). The SystemCoreClock

value is then set to match the results of this configuration process.

In TTRD02a, we record our expected system operating frequency in main.h

by means of Required_SystemCoreClock. We then check that the system has

been configured as expected, as shown in Code Fragment 3.

As we enable the WDT unit before we call SCH_Init(), we can force a reset

(and a transition to FAIL_SILENT mode) if – for some reason – the system

operating frequency is not as expected.

CMSIS also provides us with a SysTick timer to drive the scheduler, and a

means of configuring this timer to give the required tick rate (Code Fragment

3).

// Now to set up SysTick timer for "ticks" at interval TICKms
if (SysTick_Config(TICKms * SystemCoreClock / 1000))
 {
 // Fatal fault
 ...
 while(1);
 }

Code Fragment 3: Configuring the SysTick timer.

A key advantage of using the “SysTick” to drive your scheduler is that this

approach is widely used and very easily portable between microcontroller

families.

Please refer to Section 2.17 for information about the use of other timers as a

source of system ticks.

2.5. The ‘Update’ function

Code Fragment 4 shows the SysTick ISR.

http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#ga93f514700ccf00d08dbdcff7f1224eb2
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6

24

void SysTick_Handler(void)
 {
 // Increment tick count (only)
 Tick_count_G++;
 }

Code Fragment 4: The ‘Update’ function (SysTick_Handler()) from TTRD02a.

This arrangement ensures that the scheduler function can keep track of

elapsed time, even in the event that tasks execute for longer than the tick

interval.

Note that the function name (SysTick_Handler) is used for compatibility with

CMSIS.

2.6. The ‘Add Task’ function

As the name suggests, the ‘Add Task’ function – Listing 5 - is used to add

tasks to the task array, to ensure that they are called at the required time(s).

The function parameters are (again) as detailed in Table 1.

Please note that this version of the scheduler is “less dynamic” than the

version presented in PTTES. One change is that only periodic tasks are

supported: “one shot” tasks can no longer be scheduled. This, in turn, ensures

that the system can be readily modelled (at design time) and monitored (at run

time), processes that we will consider in detail in subsequent chapters.

We say more about the static nature of the schedulers in this book in

Section 2.10.

2.7. The ‘Dispatcher’

The release of the system tasks is carried out in the function

SCH_Dispatch_Tasks(): please refer back to Figure 14 to see this function in

context.

The operation of this “dispatcher” function is illustrated schematically in

Figure 16.

25

Figure 16: The operation of the dispatcher in the TTC scheduler described in this chapter.

In Figure 16 the dispatcher begins by determining whether there is a task that

is currently due to run. If the answer to this question is “yes”, the dispatcher

runs the task. It repeats this process (check, run) until there are no tasks

remaining that are due to run.

The dispatcher then puts the processor to sleep: that is, it places the processor

into a power-saving mode. The processor will remain in this power-saving

mode until awakened by the next timer interrupt: at this point the timer ISR

will be called again, followed by the next call to the dispatcher function

(Figure 14).

The SCH_Dispatch function employed in TTRD02a is shown in Listing 5.

Referring again to Figure 14, it should be noted that there is a deliberate split

between the process of timer updates and the process of task dispatching.

This division means that it is possible for the scheduler to execute tasks that

are longer than one tick interval without missing timer ticks. This gives

greater flexibility in the system design, by allowing use of a short tick interval

(which can make the system more responsive) and longer tasks (which can –

for example – simplify the design process).

Although this flexibility is available in the scheduler described in this chapter,

many (but not all) TTC systems are designed to ensure that no tasks are

running when a timer interrupt occurs: however, even in such designs, a run-

time fault may mean that a task takes longer to complete. Because of the

dynamic nature of the scheduler, the system may be able to recover from such

run-time faults, provided that the fault is not permanent.

Start task
dispatcher

Run task

Determine which
task is due to run
next in this tick

(if any)

Is there a
task due to

run?

Go to sleep

End task dispatcher

No

Yes

26

Flexibility in the design process and the ability to recover from faults are two

reasons why “dynamic” TT designs (with a separate timer ISR and task

dispatch functions) are generally preferred over simpler designs in which

tasks are dispatched from the timer ISR.

In addition, separating the ISR and task dispatch functions also makes it very

simple to create TT designs with support for task pre-emption (including

“time-triggered hybrid” – TTH – architectures): we discuss this process in

Chapter 11.

In this listing, please note that Tick_count_G is a “shared resource”: it is

accessed both in the scheduler Update ISR and in this Dispatcher function.

To avoid possible conflicts, we disable interrupts before accessing

Tick_count_G in the Dispatcher.

2.8. The ‘Start’ function

The scheduler Start function (Code Fragment 5) is called after all of the

required tasks have been added to the schedule.

void SCH_Start(void)
 {
 // Enable SysTick timer
 SysTick->CTRL |= 0x01;

 // Enable SysTick interrupt
 SysTick->CTRL |= 0x02;
 }

Code Fragment 5: The SCH_Start() function from TTRD02a. This function should be
called after all required tasks have been added to the schedule.

SCH_Start() starts the scheduler timer, and enables the related interrupt.

2.9. The ‘sleep’ function

In most cases, the scheduler enters “idle” mode at the end of the Dispatcher

function: this is achieved by means of the SCH_Go_To_Sleep() function

(Code Fragment 6).

void SCH_Go_To_Sleep()
 {
 // Enter sleep mode = "Wait For Interrupt"
 __WFI();
 }

Code Fragment 6: The SCH_Go_To_Sleep() function from TTRD02a.

The system will then remain “asleep” until the next timer tick is generated.

Clearly, the use of idle mode can help to reduce power consumption.

However, a more important reason for putting the processor to sleep is to

control the level of “jitter” in the tick timing.

27

The central importance of jitter in the system operation will be explored in

Chapter 4. In Chapter 5, we will explore the use of idle mode in schedulers

in more detail.

2.10. Where is the “Delete Task” function?

Traditional approaches to changing system modes in TT designs involve

mechanisms for adding / removing tasks from the schedule. For example, the

TT task scheduler described in “PTTES” provides SCH_Add_Task() and

SCH_Delete_Task() functions that can be called at any time while the

scheduler is running.

Such mechanisms for changing system modes have the benefit of simplicity.

We will argue throughout this book that simplicity is generally “A Good

Thing”. However, the author has had the opportunity to review many system

designs created using variations on the PTTES schedulers over the years: in

doing so, it has become clear that providing an easy way of changing the task

set at run-time has had unintended consequences.

TT schedules are – by their very nature – static in nature, and a key strength

of this development approach is that a complete task schedule can be carefully

reviewed at design time, in order to confirm that all system requirements have

been met: we consider this process in detail in Chapter 4. Once the system is

in the field, we can then perform monitoring operations to ensure that the run-

time behaviour is exactly as expected at design time: we begin to consider

how we can achieve this in Chapter 9.

In general, it is extremely difficult to change the system mode in TT designs

using conventional methods without significantly undermining this static

design process. When tasks can be added or removed from the schedule at

“random” times (perhaps – for example – in response to external system

events), then the system design becomes dynamic (in effect, it is no longer

“time triggered”), and it is not generally possible to predict the precise impact

that the mode change will have on all tasks in the schedule.

Even where the perturbations to the behaviour of a TT system during

traditional mode changes are short lived, this may still have significant

consequences. TT designs are often chosen for use in systems where security

is an important consideration. In such designs – because the task schedule is

known explicitly in advance – it is possible to detect even very small changes

in behaviour that may result from security breaches (for example, if the

system code has been changed as the result of a virus, etc). In circumstances

where dynamic changes to a task set are permitted (as in traditional mode

changes), this may mask security-related issues.

In the approach to system mode changes recommended in this book, we

always change task sets (and – therefore – the system mode) by means of a

28

processor reset. This ensures that the transition is made between one complete

set of tasks (that can be subject to detailed analysis, test and verification at

design time) and another complete set of tasks (that can be similarly assessed

at design time).

2.11. Watchdog timer support

As noted throughout this chapter, TTRD02a requires a watchdog timer. The

code used to initialise the LPC1769 watchdog is shown in Listing 11.

The configuration code for the watchdog used in the demo system is

straightforward, but it should be noted that this feature of the design is

controlled by a jumper: this is needed because watchdog support cannot be

enabled when the system is debugged over the JTAG link (if the watchdog is

enabled, the processor resets will keep breaking the debug connection). To

use this design, you need to insert the jumper (between the pin identified in

the Port Header file and ground) in order to enable watchdog support). Please

refer to Code Fragment 7 and Figure 17 for further information about this.

// Add jumper wire on baseboard to control WDT
// WDT is enabled *only* if jumper is in place.
// (Jumper is read at init phase only)
// Port 2, Pin 3
#define WDT_JUMPER_PORT (2)
#define WDT_JUMPER_PIN (0b1000)

Code Fragment 7: WDT jumper settings from the Port Header file (see Listing 1).

Figure 17: Jumper connections on the EA Baseboard that can be used to enable WDT support.
Please refer to Appendix 1 for further information about the baseboard.

Ground

Port 2, Pin 3
(PIO2_3)

29

Figure 18: Running a WDT refresh task (shown as Task W) at the start of each tick interval.

The code used to refresh the watchdog is shown in Code Fragment 8. Please

note that interrupts are disabled while the WDT is “fed”, to avoid the

possibility that the timer ISR will be called during this operation. This might

be possible (even in a TTC design) in the event of a task overrun.

void WATCHDOG_Update(void)
 {
 // Feed the watchdog
 __disable_irq(); // Avoid possible interruption
 LPC_WDT->WDFEED = 0xAA;
 LPC_WDT->WDFEED = 0x55;
 __enable_irq();
 }

Code Fragment 8: The WATCHDOG_Update() function from TTRD02a.

2.12. Choice of watchdog timer settings

It is clearly important to select appropriate timeout values for the watchdog

timer (WDT) and to refresh this timer in an appropriate way (at an appropriate

interval).

One way to do this is to set up a WDT refresh task (like that shown in Code

Fragment 8) and schedule this to be released at the start of every tick (Figure

18). In this case, we would probably wish to set the WDT timeout values to

match the tick interval. In this way, a task overrun would delay the WDT

refresh and cause a transition to a FAIL_SILENT mode (via a WDT reset):

see Figure 19.

Used in this way, the WDT provides a form of “Task Guardian” (TG) that can

detect and handle task overruns (that is, tasks that – at run time – exceed the

WCET figures that were predicted when the system was constructed). Such

overruns can clearly have a very significant impact on the system operation.

Figure 19: A WDT reset caused by a task overrun.

Time

...W A B C DW W W

Time

...W A BW

WDT reset

30

Please note that this form of TG implementation is effective, but is a rather

“blunt instrument”: in Chapter 9 we’ll begin to explore some techniques that

will allow us to identify (and, if required, replace) individual tasks that

overrun by more than a few microseconds.

Please also note that – in addition to ensuring that we make a “clean” change

between task sets – using a reset between system modes allows us to use

appropriate watchdog settings for each system mode. This is possible because

the majority of modern COTS processors allow changes to WDT settings

(only) at the time of a processor reset.

We will provide examples of designs that use different watchdog timeouts in

different modes in Chapter 7.

2.13. The ‘Heartbeat’ task (with fault reporting)

How can you be sure that the scheduler and microcontroller in your embedded

system is operating correctly i.e. how can you get a tangible indication of your

systems “health”?

One way to do this is to hook up a JTAG connection to the board, or some

other connection (e.g. via a USB port or a UART-based link). Such

connections may be straightforward on a workbench during system

prototyping, but are not always easy once the embedded processor has been

incorporated into a larger piece of equipment.

One effective solution is to implement a “Heartbeat” LED (e.g. see Mwelwa

and Pont, 2003).

A Heartbeat LED is usually implemented by means of a simple task that

flashes an LED on and off, with a 50% duty cycle and a frequency of 0.5 Hz:

that is, the LED runs continuously, on for one second, off for one second, and

so on.

Use of this simple technique ensures that the development team, the

maintenance team and, where appropriate, the users, can tell at a glance that

the system has power, and that the scheduler is operating normally.

In addition, during development, there are two less significant (but still

useful) side benefits:

 After a little practice, the developer can often tell “intuitively” – by

watching the LED – whether the scheduler is running at the correct rate:

if it is not, it may be that the timers have not been initialised correctly,

or that an incorrect crystal frequency has been assumed.

 By adding the Heartbeat LED task to the scheduler array after all other

tasks have been included. This allows the developer to easily see that

the task array is adequately large for the needs of the application (if the

array is not large enough, the LED will never flash).

31

Figure 20: Output from a Fault LED (displaying “Fault Code 2”).

We can take this approach one step further, by integrating the Heartbeat task

with a fault-reporting function (see Listing 9, p.53). To do this, we maintain

a (global) fault variable in the system, and set this to a non-zero value in the

event of a fault. If a non-zero fault value is detected by the Heartbeat task,

we then reconfigure the task to display this value. For example, we could

display “Fault Code 2” on the LED as shown in Figure 20.

2.14. Detecting system overloads (TTRD02b)

When we are using a TTC scheduler, we will generally aim to ensure that all

tasks that are scheduled to execute in a given tick have completed their

execution time by the end of the tick.

For example, consider Figure 21. In the third tick interval, we would

generally expect that the sum of the worst-case execution time of Task E and

Task F would be less than the tick interval.

It is very easy to check this during the system execution.

To do so, we set a flag every time a task is released and clear the flag when

the task completes. We can then check this flag in the scheduler ISR: if the

flag is set, then there is still a task running, and we have an “overload”

situation. We can report this using a global fault variable and the “Heartbeat”

task that was introduced in Section 2.13.

Please note that this mechanism is intended primarily as a guide to the system

loading for use during development, but it can be included in production

systems (and, perhaps, checked during scheduled maintenance sessions), if

the task overrun situation is a “nuisance” indicator, rather than a safety

indicator. This may be the case in systems that have “soft” timing constraints.

Figure 21: In most TTC designs, we expect that all tasks released in a given tick will complete their
execution by the end of the tick.

Time

...A C E GB D F H

Total (maximum) task execution time

Tick interval

32

Please also note that this indicator clearly won’t have a chance to work if the

WDT setting in your system are set to match the tick interval (as in Figure

19).

You will therefore need to increase the WDT timeout settings if you intend to

use this mechanism (during development or in a production system).

TTRD02b includes a complete implementation of the overload detection

mechanism.

Code Fragment 9 shows the timer ISR function from TTRD02b: in this ISR

the “Task_running_G” flag is checked.

void SysTick_Handler(void)
 {
 // Increment tick count (only)
 Tick_count_G++;

 // As this is a TTC scheduler, we don't usually expect
 // to have a task running when the timer ISR is called
 if (Task_running_G == 1)
 {
 // Simple fault reporting via Heartbeat / fault LED.
 // (This value is *not* reset.)
 Fault_code_G = FAULT_SCH_SYSTEM_OVERLOAD;
 }
 }

Code Fragment 9: Detecting system overloads: Checking the “Task running” flag.

Code Fragment 10 shows how this flag can be set (when the task is released,

in the “Dispatcher” function).

// Check if there is a task at this location
if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 // The task is due to run

 // Set "Task_running" flag
 __disable_irq();
 Task_running_G = 1;
 __enable_irq();

Code Fragment 10: Detecting system overloads: Setting the “Task running” flag.

2.15. Example: Injected (transitory) task overrun (TTRD02b)

We’ve introduced two simple mechanisms for detecting task overruns in this

chapter. In this section, we introduce a simple example that can be used to

test these mechanisms. The complete example is illustrated in TTRD02b.

33

Figure 22: A system design in which there is a “theoretical” system overload.

Please refer to Listing 12. This shows part of a HEARTBEAT_Update task

has been adapted to generate a transient overrun event (of duration less than

4 ms), after 15 seconds.

Note that – with the standard WDT settings – this task will only overrun once

(because the overrun will be detected by means of the WDT, and the system

will be reset: after the reset, the system will enter a fail silent mode).

However, if we extend the WDT setting (to around 10 ms), we can use the

mechanisms introduced in Section 2.14 to detect (and report) the system

overload situation. These WDT setting are illustrated in TTRD02b.

2.16. Task overruns may not always be “A Bad Thing”

A “soft” TTC design may be able to tolerate occasional task overruns.

In some cases, we can go beyond this. Consider, for example, the design

illustrated in Figure 22.

In this design, Task A and Task B are both released in the first tick, but their

combined execution time significantly exceeds the tick interval.

In this design (and in many practical cases), this “theoretical” system overload

has no impact on the task schedule, because no tasks are due to be released in

the second tick. Such a design may well be considered acceptable.

As we will see in Chapter 11, this type of task schedule forms the basis of

TTH and TTP scheduler architectures, both of which are in widespread use.

Note that – if you opt to run with longer task combinations in one or more

ticks – you may need to adjust the WDT settings for the system (or at least

for this system mode), in order to avoid WDT-related resets.

2.17. Porting the scheduler (TTRD02c)

All of the schedulers presented so far in this chapter have employed the

SysTick timer to generate the system tick. Such a timer is common across

many microcontrollers based on an ARM core and the code can therefore be

easily ported.

When you use this approach, you should bear in mind that this solution was

intended (by ARM) to be used to generate a 10 ms tick, as is commonly

required in conventional operating systems.

As SysTick is based on a 24-bit timer, the maximum interval is (224-1) ticks:

at 100 MHz (the SystemCoreClock frequency used in the majority of the

Time

...A E GB F H

34

examples in this book), this provides a maximum tick interval of (16,777,215

/ 100,000,000) seconds, or approximately 160 ms.

As an example of an alternative way of generating system ticks, TTRD02c

illustrates the use of Timer 0 in the LPC1769 device to drive a TTC scheduler.

This is a 32-bit timer. In this design, the required tick interval is provided in

microseconds, and the maximum tick interval is ((232 -1) / 100,000,000)

seconds, or approximately 42 seconds.

Key parts of the scheduler initialisation function for TTRD02c are shown in

Listing 13.

2.18. Conclusions

In this chapter, we’ve introduced some simple but flexible task schedulers for

use with sets of periodic co-operative tasks.

In Chapter 3, we present an initial case study that employs one of these

schedulers.

